RSS    

   Три кризиса в развитии математики - (диплом)

p>В древнегреческой философии понятие бесконечности появилось впервые у материалистов милетской школы. Анаксимандр (610–546 гг. до н. э. ), переемник Фалеса, учил: материя бесконечна в пространстве и во времени; вселенная бесконечна, число миров бесконечно. Анаксимен (546 г. до н. э. — расцвет деятельности) говорил: вечный круговорот материи — это и есть бесконечность. Понятие бесконечности как математическая категория впервые появляется у Анаксигора (около 500–428 гг. до н. э. ). В сочинении “О природе” Анаксигор писал: вещи бесконечно делимы, нет последней ступени делимости материи; с другой стороны, всегда имеется нечто большее, что является большим.

Бесконечность для Анаксогора —потенциальная; она существует в двух формах: как бесконечно малое и бесконечно большое. В математике точка зрения Анаксагора нашла благоприятную почву благодаря открытию несоизмеримых величин—величин, которые не могут быть измерены любой, какой угодно малой, общей мерой.

Демокрит (около 560–570 гг. до н. э. ), по-видимому, изучал так называемые роговидные углы (углы, образуемые дугой окружности и касательной к ней).

Поскольку каждый роговидный угол “меньше” любого прямолинейного угла, здесь появляется понятие актуально бесконечно малого. Впоследствии появилось и понятие актуальной бесконечности.

Аристотель (384–322 гг. до н. э. ) отчетливо различает два вида бесконечности: потенциальную и актуальную. Понятие актуальной бесконечности в древней Греции не получило развития как в философии, так и в математике. Математики считали, что “целое больше любой своей части” и, тем самым, по существу, исключали актуальную бесконечность. Философы (Аристотель, например) доказывали противоречивость понятия актуальной бесконечности и тем самым поддерживали математиков. Понятие бесконечности подвергалось серьезной критике со стороны Зенона Элейского (около 490–430 гг. до н. э. ). Зенон был учеником Парменида, главы элейской школы. Парменид утверждал, что бытие едино, неподвижно и неизменно. Движение, изменение—это только видимость, обусловленная несовершенством наших органов чувств. Мир (бытие) может быть познан только разумом, но не чувствами.

Зенон Элейский выдвинул 45 апорий (антиномий), имея при этом целью развить и лучше обосновать учение Парменида. Из этих антиномий до нашего времени дошло только 9. Вот наиболее характерные из них.

    Против движения.

“Дихотомия”. Движения нет, потому что то, что движется, должно дойти до середины, прежде чем оно дойдет до конца. Но если бы тело дошло до середины, оно должно было бы раньше дойти до середины этой середины и т. д. до бесконечности, а это невозможно. Таким образом движение не может начаться.

“Ахиллес и черепаха”. Медленный в беге никогда не будет перегнан быстрым, потому что тот, кто преследует, должен сначала достичь точки, из которой начал убегающий, так что убегающий всегда будет на некотором расстоянии впереди.

Заслуга Зенона Элейского в развитии философии и математики состоит в том, что он выявил реальную противоречивость времени, движения и пространства, а значит и бесконечность. В. И. Ленин писал, что Зенон не отрицал чувственную достоверность движения; его интересовал вопрос, как выразить сущность движения в логике понятий.

Однако, Зенон последнюю задачу не решил, не решили её и другие ученые древней Греции.

    3. Три знаменитых задачи древности

В развитии содержания и способов обоснования математики древней Греции выдающуюся роль сыграли три задачи: трисекция угла, удвоение куба (делийская задача) и квадратура круга.

Пробуждение особого интереса к этим задачам именно в древней Греции не случайно. При построении математики как дедуктивной системы, базирующейся на геометрическом фундаменте две первые задачи появляются как естественные обобщения более элементарных задач. Задача о квадратуре круга была получена “по наследству” от древних египтян и вавилонян.

Трисекция угла. Дан РАВС, требуется разделить его на три равные части. Формулировка задачи относится к любому углу и является обобщением задачи о делении данного угла на две равные части.

    Рис. 2

Удвоение куба. Построить куб, объем которого в два раза больше объема данного куба. Построить квадрат, площадь которого в два раза больше площади данного квадрата. Если сторона данного квадратаа, а искомого х, то х2=2а2; . Следовательно, сторона искомого квадрата равна диагонали данного. Отсюда осуществимость построения циркулем и линейкой искомого квадратаAA`CC` (рис. 2). Вполне естественно было перейти от этой задачи на плоскости к соответствующей задачи в пространстве: построить куб, объем которого в два раза больше объема данного куба.

Квадратура круга. Построить квадрат, по площади равный данному кругу. Ни одна из указанных задач не разрешима циркулем и линейкой. 4. Преодоление кризиса основ

    древнегреческой математики

Пифагорейцы заложили основы геометрической алгебры. Теэтет и Евклид установили классификацию квадратичных иррациональностей.

Евдопс развил общую теорию пропорций — геометрический эквивалент теории положительных вещественных чисел — и разработал метод исчерпывания —зачаточную форму теории пределов, основанную на геометрической базе. Эти теории создали прочный каркас здания древнегреческой математики, фундаментом которого была геометрия; тем самым преодолевались трудности, связанные с фактом существования несоизмеримых величин.

Чтобы избежать трудностей в обосновании математики, связанных с парадоксами бесконечности (Зенон, Аристотель), большинство ученых древней Греции предпочли отказаться от использования в математике идей бесконечности и движения или свести их применение к минимуму. В качестве такого минимума было принято утверждение о неограниченной делимости геометрических величин. Рассмотрение трех знаменитых задач привело древнегреческих ученых к убеждению, что решение геометрической задачи может считаться выполненным строго геометрически лишь при условии использования только (идеальных) циркуля и линейки. Использование механических средств в геометрии не допускается. Только после основополагающих работ пифагорейцев, Теэтета, Евдокса и других математиков, после соглашения о необходимых ограничениях и допустимых средствах построения, Евклид написал “Начала”, посвященные основам и методам древнегреческой математики. В “Началах” Евклида кризис основ древнегреческой математики был преодолен —конечно, для своего времени, и, добавим, преодолен не во всех пунктах и не всегда совершенным образом.

    II. Способы обоснования математики в
    XVIII и в первой половине XIX века
    1. Особенности способов обоснования
    математики в конце XVII и в XVIII веке

В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики. В конце XVII и в XVIII веке в математике и механике были получены классические результаты фундаментального значения. Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики. Значительные результаты были получены в алгебре и теории чисел. А. Эйлер, а вслед за ним и некоторые другие ученые второй половины XVIII века проделали большую работу по систематизации содержания математических дисциплин, в первую очередь математического анализа, а вместе с ним алгебры и тригонометрии. Вместе с тем, в рассматриваемый период способы обоснования математических теорий— особенно дифференциального исчисления —резко отставали от бурно развивающегося содержания математики. Это отставание проявилось в различных, между собой связанных формах и притом своеобразно в отдельных математических теориях.

Общей чертой попыток обоснования математики с конца XVII и планомерно до последней четверти XVIII века было стремление обосновать каждую математическую теорию в полном соответствии с истинами элементарной, “низшей” (по терминологии Ф. Энгельса) математики, т. е. элементарной математики, какой она была примерно до открытия аналитической геометрии. Это стремление проявилось в двух формах. Сначала математики пытались воздвигнуть развиваемые ими математические теории на фундаменте, построенном в свое время для обоснования “низшей” математики. Это хорошо показывают господствовавшие в то время способы обоснования алгебры и учения о числе. Если же такое построение явно не удавалось (что было особенно ясно в отношении дифференциального исчисления с момента его возникновения), то старались обосновать математическую теорию на принципах, специально для неё разработанных, содержание которых можно максимально согласовать, “примирить” (Энгельс) с истинами “низшей” математики.

Иначе говоря, в обоих случаях принципы и утверждения “низшей” математики метафизически абсолютизировались, рассматривались как незыблемый фундамент каждой математической теории. В конце XVII и особенно в первых трех четвертях XVIII века основные понятия и законы, установленные в одной математической теории часто переносились в новые области исследования, совершенно формально, т. е. без обоснования.

Законы алгебры и математического анализа формировались без указания переменных, для которых они справедливы, и без указания границ их применимости. Такая трактовка законов алгебры и математического анализа, естественно, распространялась и на основывающиеся на них алгоритмы.

К середине XVIII века описанная трактовка законов математического анализа и алгебры стала настолько общепринятой, что Л. Эйлер счел возможным истолковать её как основной принцип методологии анализа вообще. Случилось это при следующих обстоятельствах.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.