RSS    

   Дипломная работа: История системного подхода в науке и технике

Фактически сформулированное Архимедом основное уравнение плавучести нашло практическое применение только в XVII в. Тогда (в 1666 г.) английский корабельный инженер А. Дин "предсказал" углубление корабля до спуска его на воду. Он был настолько уверен в своей правоте, что приказал еще на стапеле вырезать во внешней обшивке корпуса отверстия пушечных портов, которые после спуска корабля на воду возвышались над ее поверхностью на расстоянии, которое было заранее вычислено строителем.

Как видно на примере Архимеда, в период античности можно говорить лишь об отдельных "образцах" инженерной деятельности. Архимеда нельзя назвать инженером в современном смысле этого слова.

Сегодня кажется обычным требовать от науки прикладных результатов. Да и сама современная наука без технической практики просто не мыслима. Однако такое соотношение науки и практики существовало не всегда. В период античности, даже если полученные в результате ремесленной практике, использовались в науке, то они подвергались переработке и систематизировались в соответствии с идеалами теоретического знания.

Прикладные исследования, направленные на специальное исследование техники, по существу, отсутствовали, как и многочисленные сегодня технические науки. В них тогда просто не было необходимости. Кроме того, рабский труд не способствовал развитию техники и целенаправленному приложению к ней техники. Свободный же ремесленник более был заинтересован в высоком качестве производимой им продукции. В античности ремесленное производство - это прежде всего художественное производство. Оно не ориентировалось на науку, хотя и использовало научные знания. Различные механические изобретения служили лишь демонстрацией мощи научного знания. Но повсеместного применения в ремесленном производстве они не находили. Поэтому и не возникла в тот период профессиональная инженерная деятельность, без которой немыслим современный инженер, а сами изобретения зачастую служили лишь украшением частных библиотек.

 

4.2 Техническая деятельность в Европе Х-XII в.

В это время в Европе зарождаются одни из первых профессиональных ремесленных структур - цехи. В момент своего зарождения цехи были прогрессивны. Они формировались как корпорации свободных ремесленников, занимающихся одним и тем же ремеслом. Каждый цех имел свой статут, в котором строго регламентировали тип и качество используемого материала, вид приспособлений и орудий труда, количество и качество выпускаемых изделий, поведение его членов и многое другое. При этом велся строгий надзор за выполнением предписаний этих статутов. Обычно статут начинался примерно так: "Тот кто хочет и знает ремесло может стать мастером с условием того, чтобы он работал согласно обычаям цеха, которые таковы: …". Далее следовал ряд запретов типа: "запрещается вырабатывать в неделю больше 110 кож", "переманивать друг у друга работников, предлагая им большее количество денег", "покупать больше сырья чем требуется без ведома старосты цеха" и т.д. [1]

Как уже говорилось, будучи в момент зарождения прогрессивными, постепенно цехи стали тормозом в развитии технической деятельности и ремесленного производства. Жесткая регламентация ремесленной технической деятельности, слабая специализация ремесел внутри цехов, ограниченность рынков сбыта, отсутствие стимулов, заставляющих удешевлять и увеличивать выпуск изделий, не заинтересованность в развитии технической базы определяли тогда отношение к технике. Боясь конкуренции, цехи были противниками всяких новшеств и изобретений, которые воспринимались ими как нечто "отвратительное" и нарушающее их привилегии. Выдвигались даже запреты на использование не только самих изобретений, но и изделий изготовленных с их помощью, а изобретателей преследовали. В конце средних веков цеховая организация промышленности приходит в противоречия с новыми потребностями производства, рассчитанного на широкий рынок. Однако, не смотря на все это, у средневековых ремесленников были качества, которых часто не достает современному инженеру - озабоченность нуждами потребителя, ориентация не на усредненного, а на конкретного потребителя, стремление держать высокую марку цеха.

 

4.3 Становление инженерной деятельности

Становление инженерной деятельности было связано с развитием высших технических школ, которые начинают целенаправленную научную подготовку инженеров. В них проводятся и первые научно-технические исследования. С необходимостью систематизации научного материала, нужного для подготовки инженеров, связано и возникновение первых технических наук. К концу XIX в. научная подготовка инженеров, их специальное, именно высшее образование, становится настоятельной необходимостью. Поэтому к этому времени многие ремесленные, средние технические училища преобразуются в высшие учебные заведения, где наряду с практическими предметами основное место начинают занимать самые различные науки, хотя на практике эти науки и применяются первоначально весьма редко и инженеры работают пока часто, как и раньше, "на глазок". Но уже когда начинает ощущаться недостаточность основательной теоретической научной базы инженеров. В то же время образование инженеров должно было сочетаться с их практической подготовкой. К концу IХ началу XX в. наука все более проникает в инженерную практику и инженерное образование. Эти две тенденции - ориентация на практику и на науку - характерны и сегодня для высших технических школ. С точки зрения первой ориентации, инженерная деятельность рассматривается как искусство, то есть система приемов и методов практической деятельности (например, строительное искусство, искусство проектирования и т.п.); с точки зрения второй - как своего рода прикладная, техническая наука как порождение науки, как результат приложения науки к технической практике. В соответствии с этими тенденциями реализуются и различные идеалы и нормы инженерной деятельности и инженерного образования: поощрение преимущественно изобретательско-проектной функции инженера, восходящей к художникам-архитекторам и ремесленникам-механикам эпохи Возрождения, или познавательски-исследовательской, расчетной, научной, восходящей к ученым-экспериментаторам Нового времени. В течение всего периода становления классической инженерной деятельности эти две тенденции конкурируют и поочередно возобладают как в сфере практической инженерной деятельности, так и в сфере инженерного образования.

Технический стиль мышления близок художественному, поскольку оба они связаны с очеловечиванием природы. В эпоху Возрождения эта связь получает новое выражение в деятельности великих мастеров того времени. И хотя у них уже намечается четкая ориентация на науку, все же преобладающим является художественный стиль мышления. Мифологическая картина мира средневекового ремесленника в эпоху Возрождения сменяется художественной картиной реальности, стремлением к научному познанию окружающего человека мира [2, с.57]. В отличии от научного и технического мышления основной функцией художественного является культурная - проблема ценностей и идеалов выражающих замысел и пути развития мира по законам красоты. В свою очередь инженерное мышление несет в себе черты как практического технического мышления предшествующих эпох, переработанного художниками-архитекторами Возрождения в новый художественно-научно-технический стиль, так и теоретического мышления архимедово-галилеевской времени.

С художественным мышлением сближает широкое использование им графических средств для выражения своих идей. Язык черчения - язык богатый своими возможностями и международный. Чертеж для инженера - это не только средство общения с исполнителями и коллегами, это идеализированная, но в тоже время поставленная в четкое соответствие с практикой, плоскость выражения его мысли. Именно по этому инженеры предпочитают чертить схемы, а не писать формулы или текст. В отличие от художника это графическое пространство служит инженеру не для художественного отображения окружающего мира с целью вызвать эстетическое наслаждение, а для детализации и конкретизации инженерной идеи в развернутую схему, научного обоснования и математического расчета этой схемы, чтобы впоследствии можно было выполнить рабочие чертежи - предписания мастерам и рабочим к реализации его замыслов [2, с.58]. В современных технических школах студенты в процессе обучения значительную часть своего времени уделяют черчению, где усваивают этот графический язык.

Средневековые ремесленники и архитекторы тоже могли пользоваться и действительно пользовались чертежами и математическими пропорциями, но они выполняли тогда иную функцию. Между языками ремесла и современного проектирования, в структуру которого действительно входит наука, есть принципиальная разница. Пропорция для античного и средневекового мастера была не научным или даже не эстетическим средством, а живой методикой делания вещи, начиная с выбора материала, всей технологической последовательности выполнения работ и кончая определением строя вещи в целом и каждой ее части. Когда современный архитектор, желая придать фасаду здания эстетичый вид, расчерчивает его по так называемому "золотому сечению", то это совсем иной научно-рациональный подход, чем это было в прошлом. Не следует забывать, что сегодня техническое черчение - это воплощенная наука, применение начертательной и проективной геометрии к решению практических задач машиностроения, строительства и т.д. Одним из создателей этого графического языка инженеров был французский инженер и ученый Гаспар Монж.

Монж был математиком и инженером одновременно. Он одним из первых понял и создал строго научную, математически точную систему графических изображений для нужд техники. В этом смысле он был продолжателем учения о перспективе художников-инженеров эпохи Возрождения. Но Монж пошел дальше их, сделав язык чертежа, с одной стороны, более строгим и научным, а с другой - пригодным для решения практических инженерных задач [3, с.103]. Очень скоро техническое черчение стало центральным пунктом инженерного образования, графическим языком инженеров. В других отраслях техники и технической науки также сложились свои особые графические средства для выражения инженерных идей, хотя и не всегда тесно связанные с геометрией, как, например, электрические схемы в электротехнике и радиотехнике.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.