RSS    

   Реферат: Физика (лучшее)

        б) Полупроводники р-типа. Если внедрить в кри­сталлическую решетку че­тырёхвалентного полупроводника­ (кремния) трёхвалентный атом (бор), то для образования ковалентной связи с соседями ему надо четыре электрона, а у него их только три. Поэтому одна связь оказывается не укомплектованной. Атом бора за­хватывает один электрон от соседнего атома кремния, так как это энергетически выгодно. В результате этого атомы примеси превращаются в отрицательные ноны, а в полупроводнике возникают дырки, обусловливающие его электропроводность. Проводимость этого типа называется дырочной, примесь — акцепторной, а полупроводник  - р-типа (от слова positive — положительный).

З.   Полупроводниковый диод. На основе примесных полупроводни­ков созданы устройства, являющиеся важными компонентами современ­ных электронных приборов — диоды, транзисторы и т.д. Их важным пре­имуществом являются высокая надёжность, большой срок службы и миниатюрность. В настоящее время на 1 см2  удаётся разместить тысячи таких элементов, в связи с чем и, появились, например, персо­нальные ЭВМ, размещающиеся на столе и обладающие огромными вычисли­тельными возможностями. Рассмотрим принцип работы диода. При соединении полупроводников n- и р-типа по­лучается диод с так называемым р-n - переходом. В результате такого со­единения небольшое количество электронов около контакта перейдёт из полупроводника n-типа в полупроводник р-типа, где произойдёт их рекомбинация с дырками. Вследствие этого полупроводник n-типа заряжается положительно, а р-типа -  отрицательно. Возникает некоторая разность потенциалов, которая препятствует дальнейшему переходу электронов. Если к диоду подключить источник тока, чтобы минус был соединён с по­лупроводником n-типа, а плюс - с полупроводником р-типа, то под действием внешнего электрического поля электроны и дырки прохо­дят границу раздела полупроводников и рекомбинируют. В то же время источник тока поставляет всё новые электроны и дырки. Поэтому через диод протекает достаточно сильный ток. Если изменить полярность на диоде, то под действием поля электроны и дырки отходят от границы раз­дела полупроводников и ток через диод не течёт.  Таким образом, диод обладает односторонней проводимостью. Это используется для выпрямления тока, т.е. для преобразования переменного тока в постоянный по направлению ток. Для того чтобы получить ток постоянный по величи­не, используют диоды, включённые в несколько более сложные цепи. Вы­прямительные схемы играют важную роль, так как электростанции выра­батывают ток переменный, а для работы большинства электронных устройств (радио, телевизоры, ЭВМ) требуется постоянное напряжение.

Билет № 17

Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца Мы знаем, что электрический ток создаёт магнитное поле. Естественно возникает вопрос: «,Возможно ли появление электрического тока с помощью магнитного поля?». Эту проблему решил Фарадей, открывший явление электромагнитной индукции, которое за­ключается в следующем: при всяком изменении Магнитного потока, пронизывающего площадь, охватываемую проводящим контуром, в нём возникает электродвижущая сила, называемая э.д.с. индукции. Если контур замкнут, то под действием этой э.д.с. появляется электрический ток, названный индукционньм. Фарадей установил, что э.д.с. индукции не зависит от способа изменения магнитного потока и определяется только быстротой его изменения, т.е.

Соотношение называется законом электромагнитной индукции: э.д.с. индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником. Знак минус в формуле (68.1) является математическим выражением правила Ленца. Известно, что магнитный поток является алгебраической величиной. Примем магнитный поток, пронизывающий площадь контура,

положительным. При увеличении этого потока () возникает з.д.с. индукции , под действием которой появляется индукционный ток, создающий собственное магнитное поле, направленное навстречу внешнему полю, т.е. магнитный поток индукционного тока отрицателен.

Если же поток, пронизывающий площадь контура, уменьшается (), то , т.е. направление магнитного поля индукционного тока совпадает с направлением внешнего поля.

Рассмотрим один из опытов, проведённых Фарадеем, по обнаружению индукционного тока, а следовательно, и э.д.с. индукции. Если в соленоид, замкнутый на очень чувствительный электроизмерительный прибор(гальванометр), вдвигать или выдвигать магнит, то при движе­нии магнита наблюдается отклонение стрелки гальванометра, свидетель­ствующее о возникновении индукционного тока. То же самое наблюдается при движении соленоида относительно магнита. Если же магнит и солено­ид неподвижны относительно друг друга, то и индукционный ток не воз­никает. Из приведённого опыта следует вывод, что при взаимном движе­нии указанных тел происходит изменение магнитного потока через нитки соленоида, что и приводит к появлению индукционного тока, вызванного возникающей э.д.с. индукции.

2.Направление индукционного тока определяет­ся правилом Ленца: индукционный ток всегда име­ет такое направление. что создаваемое им магнит­ное поле препятствует изменению магнитного по­тока, которое вызывает этот ток. Из этого правила следует, что при возрастании магнитного потока возникающий индукционный ток имеет такое направ­ление, чтобы порождаемое им магнитное поле было направлено против внешнего поля, противодействуя увеличению магнитного потока. Уменьшение маг­нитного потока, наоборот, приводит к появлению индукционного тока, создающего магнитное поле, совпадающее по направлению с внешним полем. Пусть, например, в однородном магнитном поле на­ходится проволочная квадратная рамка, пронизы­ваемая магнитным полем Предположим, что магнитное поле возрастает. Это приводит к увеличению магнитного потока через площадь рамки. Согласно правилу Ленца, магнитное поле, возникающего индукционного тока, будет на­правлено против внешнего поля, т.е. вектор В2 этого поля противоположен вектору Ё. Применяя правило правого винта (см. § 65, п. З), находим направление индукционного тока Ii.

З. Явление электромагнитной индукции полу­чило широкое применение в технике: промышленности получение электроэнергии на электростанциях,  разогрев и плавление проводящих материалов (металлов) в индукционных электропечах и т.д.

2.Магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в однородном маг­нитном поле находится плоская площадка площадью S, перпендикулярная к линиям магнитной индукции. (Однородным магнитным полем называет­ся такое поле, в каждой точке которого индукция магнитного поля одина­кова по модулю и направлению). В этом случае нормаль n к площадке совпадает с направлением поля. Поскольку через единицу пло­щади площадки проходит число линий магнитной индукции, равное моду­лю В индукции поля, то число линий, пронизывающих данную площадку будет в S раз больше. Поэтому магнитный поток равен

Рассмотрим теперь случай, когда в однородном магнитном поле находится плоская площадка, имеющая форму прямоугольного параллелепипеда со сторонами а и b, площадь которой S = аb. Нормаль n к площадке состав­ляет угол a с направлением поля, т.е. с вектором индукции В. Число линий индукции, проходящих через площадку S и её проекцию Sпр на плоскость, перпендикулярную к этим линиям, одинаково. Следователь­но, поток Ф индукции магнитного поля через них одинаков. Используя выражение, находим Ф = ВSпр Из рис.  видно, что Sпр= ab*cos a =Scosa. Поэтому

ф =BScos a.

В системе единиц СИ магнитный поток измеряется в веберах (Вб). Из формулы следует т.е. 1 Вб — это магнитный поток через площадку в 1 м2, расположенную перпендикулярно к линиям магнитно                      индукции в однородном магнитном поле с индукцией 1 Тл. Найдем размерность вебера:

 Билет № 19

Свободные и вынужденные колебания. Электрические колебания были открыты в известной мере случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд от электростатической машины, начали наблюдать электрический разряд банки. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В это ничего странного не было: электрический ток  и должен намагничивать стальной сердечник катушки. Удивительным было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой – южным. Повторяя опыт примерно в одних и тех же условиях, получали в одних случаях один резуль­тат, а в других другой. Далеко не сразу поняли, что при разряде конденсатора че­рез катушку возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться и ток меняет направление много раз. Из-за этого сер­дечник может намагничиваться различ­ным образом.

Периодические или почти периодиче­ские изменения заряда, силы тока и на­пряжёния называют электрическими коле­баниями.

Получить электрические колебания почти столь же просто, как и заставить тело колебаться, подвесив его на пружине. Но наблюдать электри­ческие колебания уже не так просто. Ведь мы непосредственно не видим ни перезарядки конденсатора, ни тока в катушке. К тому же колебания обычно происходят с очень большой частотой.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.