RSS    

   Реферат: История развития ядерной физики

.

Происходит превращение частиц с массой покоя отличной от нуля (0.511 МэВ) в частицы с нулевой массой покоя (фотоны), т.е. масса покоя не сохраняется.
   Наряду с процессом аннигиляции был обнаружен и процесс рождения пары электрон-позитрон. Электрон-позитронные пары легко рождались -квантами с энергией в несколько МэВ в кулоновском поле атомного ядра. В классической физике понятия частицы и волны резко разграничены - одни физические объекты являются частицами, а другие - волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего. Процессы аннигиляции и рождения пар заставили по-новому осмыслить, что же такое элементарная частица. Элементарная частица перестала быть неизменным "кирпичиком" в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения элементарных частиц. Оказалось, что элементарные частицы могут рождаться и исчезать, превращаясь в другие элементарные частицы. Следующая элементарная частица - нейтрино также вначале была предсказана теорией. Открытие нейтрона, казалось, внесло ясность в строение вещества. Все элементарные частицы, необходимые для построения атома: протон, нейтрон, электрон - были известны. Если в составе атомного ядра нет электронов, то откуда же берутся электроны, которые наблюдаются при радиоактивном распаде ядер?

 

Парадоксы бета - распада. Нейтрино

   Ответ на этот вопрос был дан в 1932 г. через год после открытия нейтрона итальянским физиком Энрико Ферми в разработанной им теории бета-распада. бета-Распад в определенном смысле аналогичен испусканию фотонов возбужденными атомами. Ни электронов в ядре, ни фотонов в атоме нет до момента излучения, и фотон, и электрон образуются в процессе распада. Изучение процесса бета-распада показало, что испускание электронов вызвано не электромагнитным взаимодействием и не ядерным взаимодействием, а новым типом взаимодействия до сих пор неизвестным в физике. Это взаимодействие было названо слабым взаимодействием. В будущем оно принесло в физику много неожиданных и сенсационных открытий.

Изучение явления бета-распада поставило перед физиками серьезную проблему. Экспериментальные факты казались несовместимыми с законами сохранения энергии, импульса и момента количества движения. Для того, чтобы спасти эти законы В. Паули в 1930 г. высказал предположение, что в процессе бета-распада наряду с электроном, который легко наблюдается, должна рождаться еще одна легкая частица с нулевым зарядом, нулевой массой покоя и спином 1/2. Поскольку нейтрино испускалось вместе с электроном в процессе бета-распада, оно могло уносить недостающую энергию, импульс и момент количества движения. Для того чтобы проверить гипотезу Паули, необходимо было обнаружить нейтрино экспериментально. Однако свойства нейтрино, предсказанные Паули, делали обнаружение ее чрезвычайно трудной задачей. Дело в том, что нейтрино должно было очень слабо взаимодействовать с веществом. Оно могло пролетать тысячи километров вещества без взаимодействия. Сечение взаимодействия нейтрино с энергией несколько МэВ с атомными ядрами ~10-34 см2. Экспериментальные попытки непосредственно зарегистрировать нейтрино продолжались почти двадцать лет. Лишь в 1953 году в результате очень сложного эксперимента Ф. Райнесу и К. Коуэну удалось зарегистрировать антинейтрино. (Антинейтрино было зарегистрировано с помощью реакции .

Источником антинейтрино служил атомный реактор, в котором антинейтрино образуются в большом количестве.). Гипотеза Паули получила блестящее подтверждение.

Пионы – кванты ядерного поля

   Наличие в атомном ядре нейтронов и протонов поставило перед физиками проблему изучения природы ядерных взаимодействий, связывающих эти частицы в ядре. В 1934 году Х. Юкава предсказал новую частицу - квант ядерного поля. Cогласно гипотезе Юкава взаимодействие между нуклонами возникает в результате испускания и поглощения этих частиц. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами.

После предсказания свойств мезона начались энергичные поиски этой частицы. И уже через два года в 1937 г. в космических лучах с помощью камеры Вильсона была обнаружена частица с массой покоя равной примерно 200 массам покоя электрона. Вначале считалось, что это и есть предсказанный Юкавой мезон. Однако более детальное исследование свойств этой частицы показало, что обнаруженные в космических лучах мезоны взаимодействуют с нейтронами и протонами не достаточно сильно, как это должно было быть для переносчиков ядерного взаимодействия. Они не захватывались атомными ядрами, а распадались с испусканием электронов. Первоначальный энтузиазм сменился некоторым разочарованием. Наконец в 1947 году также в космических лучах была обнаружена еще одна частица, которая сильно взаимодействовала с протонами и нейтронами и была той самой частицей, которую предсказал Юкава. Ее назвали -мезоном или пионом.

   Пионы, нейтроны и протоны принадлежат к одному классу частиц, называемых адронами. Их отличительная черта - участие в сильных ядерных взаимодействиях.

Лептоны

   Открытая в 1937 году частица тоже была названа мезоном, мю-мезоном. Он имеет массу ~106 МэВ и существует в двух разновидностях - отрицательно заряженная частица и положительно заряженная античастица. Сегодня мю-мезон предпочитают называть мюоном.

На то, что электронные и мюонные нейтрино разные частицы, впервые было указано в 1957 году М. Марковым и Ю. Швингером. Эта гипотеза была подтверждена в 1962 году в экспериментах на ускорителе в Брукхейвене. Было показано, что при взаимодействии мюонных нейтрино рождаются мюоны

и не рождаются электроны

Image72a.gif (1008 bytes).

Мюоны, электроны и нейтрино относятся к семейству лептонов. Еще одна частица этого семейства - лептон (таон) была открыта М. Перлом в 1979 году в реакции . Она почти в два раза тяжелее протона и может распадаться не только подобно мюону на лептоны, но и на адроны.

Существует космологическое ограничение на суммарную массу всех типов нейтрино

 m(nu1.gif (51 bytes)e) + m(neutrmu.gif (69 bytes)) + m(neutrtau.gif (67 bytes)) < 40 эВ.

Если нейтрино имеет массу, то возможны распады и осцилляции нейтрино, смешивание нейтрино различных типов. Гипотеза об осцилляции нейтрино была выдвинута в 1957 году Б. Понтекорво. В настоящее время интенсивно проводятся эксперименты по измерению массы покоя нейтрино, обнаружению осцилляций нейтрино. Если окажется, что масса нейтрино отлична от нуля, то масса вещества во Вселенной должна в основном определяться массой нейтрино.

Ядерные реакции

   Развитие ядерной физики в большой степени определяется исследованиями в такой важной ее области, как ядерные реакции. Однако после того, как Резерфорд впервые наблюдал ядерную реакцию, до появления первой модели ядерной реакции прошло довольно много лет. -Частицы от радиоактивных источников могли эффективно преодолеть кулоновский барьер только на самых легких ядрах. С появлением ускорителей ситуация радикально изменилась, теперь можно было бомбардировать ядра не только -частицами. Повысились энергии и интенсивности пучков частиц.
   Первая модель ядерной реакции появилась в 1935 году, это была модель Оппенгеймера - Филлипса, предложенная для интерпретации реакции (d,p) при низких энергиях.
   Дальнейший прогресс представлений о механизмах ядерных реакций долгое время был связан с концепцией составного ядра (компаунд-ядра), которая была предложена в 1936 году Н. Бором для объяснения резонансной структуры сечений захвата нейтронов и протонов низких энергий атомными ядрами.

   Первое количественное описание реакции, идущей через компаунд-ядро, было получено Брейтом и Е. Вигнером в 1936 году.

   Широкое распространение в расчетах сечений ядерных реакций получила феноменологическая модель испарения, предложенная В. Вайскопфом в 1937 году. В 30-50-х годах на основе "первых принципов" развивалась формальная теория ядерных реакций. Различные варианты формальной теории не содержали конкретных физических предположений таких, например, как гипотеза независимости, и в принципе могли описывать различные механизмы ядерных реакций. Однако применение их для практических расчетов было связано с большими трудностями. Тем не менее развитые в этих работах подходы позволили глубже понять физику процессов, происходящих в ядре и были использованы при создании моделей.

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.