RSS    

   Реферат: Литература - Патофизиология (Лимфатическая система)

p>2пространствах.

До настоящего времени мы говорили об интерстициальной жидкости, как будто бы она находилась в мобильном "свободном" состоянии. Однако, в нормальных интерстициальных пространствах интерстициальная жидкость связана в гель-матриксе, который состоит из больших молекул протеогликанов(которые также называются мукополисахаридами).Эти молекулы, в общем, имеют молекулярный вес больше миллиона, они имеют причудливую форму и зацепляются одна за другую, благодаря чему образуется гелеподобная природа нормальной интерстициальной жидкости.Ширина пространств между молекулами обычно составляет только 20-40 нанометров, которая настолько мала, что молекулы воды и растворенные вещества в интерстициальной жидкости могут протекать через этот гель-матрикс только со значительным трудом.Таким образом, интерстициальная жидкость в нормальных тканях находится в относительно иммобилизованном состоянии.

Даже если жидкость в интерстициальном геле не может


- 30 -


"протекать" просто от одной части интерстиция к другой, индивидуальные молекулы двигаются хаотично.Далее, поскольку эти молекулы в общем имеют диаметр в 20 или больше раз меньший, чем размеры пространств между протеогликановыми молекулами, они могут двигаться вследствие процесса диффузии через интерстиций эффективнее более чем на 95%, чем в свободной жидкости.Таким образом, питательные вещества могут диффундировать из капилляров в клетки почти с такой же интенсивностью как через гель, так и через свободную жидкость.

Имеется множество важных преимуществ наличия гель-матрикса в интерстиции.Некоторые из них следующие:

1. Молекулы протеогликана действуют как "фильтр" и удерживают клетки по отдельности.Это создает достаточно большие пространства для жидкости и питательных веществ, чтобы диффундировать из капилляров к тем клеткам, которые расположены на некотором расстоянии от капилляров.

2. Поскольку жидкость в тканевых пространствах, в основном, иммобилизована в геле, это предупреждает перетекание жидкости через тканевые пространства из верхних частей тела в нижние.С другой стороны, вся интерстициальная жидкость(16% от всего веса тела) может перетекать в течение нескольких минут в тканевые пространства ног.

3. Протеогликановая сетчатая структура не только иммобилизирует жидкость, но также иммобилизирует бактерии и задерживает распространение через ткани.


 2Взаимосвязь отечной жидкости с гелем.

Когда большие количества жидкости начинают накапливаться в интерстициальных пространствах, гель сначала улавливает и задерживает эту дополнительную жидкость, и весь гель-матрикс интерстиция набухает.Однако, поскольку гель набухает на 30-50%, то расположение протеогликановых молекул начинает нарушаться, и затем по всему интерстицию начинают развиваться пространства свободной жидкости.Поскольку жидкость все накапливается, то свободные жидкостные пространства становятся настолько большими, что они объединяются и начинают формировать каналы свободной жидкости в тканях.Как только это происходит, жидкость затем свободно перетекает через


- 31 -


ткани.

На рис.31-9 представлены объемные взаимосвязи между свободной интерстициальной жидкостью, гелевой жидкостью и общей интерстициальной жидкостью как в безотечном, так и в отечном состояниях.При нормальных условиях, когда давление свободной интерстициальной жидкости находится в интервале своего нормального отрицательного давления, в тканях находятся почти неощутимые количества свободной жидкости.На самом деле, почти вся жидкость находится в фазе геля и она высоко иммобилизована.С другой стороны, поскольку давление свободной интерстициальной жидкости нарастает, и состояние приближается к отечному, то гель набухает на 30-50%, после чего набухание не может больше продолжаться.При все большем нарастании давления интерстициальной жидкости вся дополнительная отечная жидкость, которая накапливается, представляет собой свободную жидкость, которая высоко мобильна при передвижении через тканевые пространства.Это высокая степень мобильности, которая вызывает отек ямочного типа, о чем говорилось в этой главе выше.


 2Взаимосвязь геля интерстициальной жидкости

2с регуляцией объема интерстициальной

2жидкости.

Поскольку примерно 16% средней ткани составляет интерстициальная жидкость и в норме почти вся она находится в состоянии геля, то можно развить следующую теорию регуляции объема интерстициальной жидкости.Механизм первоначально был описан для создания отрицательного давления в тканевых пространствах и сейчас он рассматривается как механизм "выслушивания", который всегда пытается удалить какую-либо свободную жидкость, которая появляется в тканях.Таким образом, вся свободная жидкость удаляется также быстро, как она образуется, в нормальных тканях остается только гель, который всегда составляет около 16% объема ткани.Остается вопрос, почему этот выслушивающий механизм удаляет только небольшое количество жидкости из геля? Ответ можно подразделить на два компонента: во-первых, тонкие ретикулярные фрагменты геля состоят из молекул гиалуроновой кислоты, которые свиты как


- 32 -


пружины и сжаты по отношению друг к другу.Таким образом эластические силы этих молекул предупреждают дальнейшее сжатие также как хлопковые волокна в хлопковом адсорбенте предупреждают сжатие между отдельными точками.Во-вторых, гель имеет небольшое количество осмотического давления, вызванного эффектом равновесия Доннана: то есть гелевой ретикулум имеет отрицательные электростатические заряды, которые удерживают небольшие подвижные положительные ионы - главным образом, ионы натрия - внутри геля.Эти ионы, в свою очередь, вызывают осмос воды в гель.Количество мукополисахаридов в тканевом геле достаточно, чтобы дать осмотическое поглощающее давление в геле, которое, согласно вычислениям, составляет около 2 мм рт.ст.Электрическая отдача "пружин" гиалуроновой кислоты дает приблизительно другие 5 мм рт.ст., что вместе дает 7 мм, что противостоит дегидратации,обусловленной -6,3 мм рт.ст. в свободной жидкости тканевых пространств.


 2Динамика интерстициальной жидкости в легких.

Динамика легочной интерстициальной жидкости та же самая, которая характерна для жидкости в периферических тканях, за исключением следующих количественных различий:

1. Легочное капиллярное давление очень низкое по сравнению системным капиллярным давлением, примерно 7 мм рт.ст., по сравнению с 17 мм рт.ст.

2. Давление интерстициальной свободной жидкости в легочном интерстиции, согласно измерениям, составляет -8 мм рт.ст., по сравнению с -6 мм рт.ст. в подкожной ткани.

3. Легочные капилляры относительно проницаемы для белковых молекул, так что концентрация белка в лимфе, покидающей легкие, относительно высока, она в среднем составляет около 4г%, вместо 2г% в периферических тканях.

4. Скорость течения лимфы из легких очень высока, главным образом, вследствие непрерывного прокачивающего движения легких.

5. Интерстициальные пространства альвеолярных отделов легких очень узки, они представлены небольшими пространствами между капиллярным эндотелием и альвеолярным эпите-


- 33 -


лием

6. Альвеолярные эпителии не слишком прочны, чтобы противостоять очень сильному положительному давлению.Они, вероятно, могут растрескаться под воздействием какого-либо положительного давления в интерстициальных пространствах, которое больше, чем атмосферное давление (0 мм рт.ст.), которое позволяет перекачивать жидкость из интерстициальных пространств в альвеолы.

Теперь давайте посмотрим, как эти количественные различия воздействуют на динамику легочной жидкости.


 2Взаимосвязь между давлением

2интерстициальной жидкости и другими

2давлениями в легком.

На рис. 31-10 показан легочной капилляр, легочная альвеола и лимфатический капилляр, дренирующий интерстициальное пространство между капилляром и альвеолой.Баланс сил на капиллярной мембране следующий:

мм рт.ст.

Силы, вызывающие движение жидкости наружу

из капилляров и в легочной интерстиций:

капиллярное давление 7

коллоидно-осмотическое

давление интерстициальной

жидкости 14

Итоговые силы, действующие

наружу 21

Силы, вызывающие абсорбцию жидкости

в капилляры:

коллоидно-осмотическое

давление плазмы 28

давление интерстициальной

свободной жидкости -8

Итоговые силы, действующие внутрь 20


Нормальные силы наружу слегка больше, чем силы внутрь.Итоговое среднее давление фильтрации на капиллярной мембране легкого может быть рассчитано следующим образом:


- 34 -


Итоговая сила наружу +21

Итоговая сила внутрь -20

Итоговое среднее давление

фильтрации +1


Итоговое давление фильтрации вызывает легкий непрерывный поток жидкости в интерстициальные пространства, и, за исключением небольших количеств, которые испаряются в альвеолы, эта жидкость прокачивается обратно в кровообращение через легочную лимфатическую систему.


 2Обмен жидкости на легочной альвеолярной

2мембране; механизм сохранения

2альвеол в "сухом" виде.

Альвеолярная эпителиальная мембрана совершенно отличается от легочной капиллярной мембраны следующим образом: легочные капилляры, как и другие капилляры тела, имеют очень большие щелевидные поры между прилегающими эндотелиальными клетками.Ионы, такие как натрий, хлориды и калий, а также молекулы кристаллоидов, такие,как мочевина, глюкоза и так далее, могут проходить через эти большие капиллярные поры с легкостью.С другой стороны, альвеолярная эпителиальная мембрана не содержит таких больших отверстий.Таким образом,все перечисленные выше молекулы могут вызвать эффекты осмотического давления на альвеолярной мембране, хотя они не имеют таких эффектов на капиллярной мембране.Например, если вода проходит в альвеолы, высокая концентрация различных растворенных веществ в легочной интерстициальной жидкости вызывает всегда непрерывный осмос воды из альвеол в интерстициальную жидкость, и жидкость затем абсорбируется в легочные капилляры вследствие коллоидно-осмотического давления плазмы.На самом деле, у людей, которые тонут в пресной воде, может достаточно жидкости абсорбироваться из альвеол в кровь в течение 2-3 минут, для того, чтобы вызвать фибрилляцию сердца вследствие разведения электролитов крови.

В дополнение к осмосу жидкости из альвеол, небольшие количества жидкости могут также двигаться из альвеол в интерс-


- 35 -


тициальные пространства как результат отсасывания отрицательным давлением в этих пространствах.

Даже физиологический раствор хлористого натрия, ионы которого предупреждают осмос в интерстициальную жидкость, движется медленно из альвеол в интерстициальные пространства вследствие отрицательного интерстициального давления.

Но гораздо более важен, чем абсорбция жидкости из альвеол, следующий вопрос: почему жидкость, которая в норме имеется в интерстициальных пространствах, не перетекает в альвеолы?Ответ снова состоит в том, что отрицательное давление интерстициальной жидкости составляет примерно -8 мм рт.ст., что постоянно заставляет жидкость течь внутрь через альвеолярную мембрану и, таким образом, также предупреждает потерю жидкости в наружном направлении.

Только та жидкость, которая идет наружу через альвеолярную мембрану, такова, что небольшое количество, которое двигается при помощи механизма капиллярности через клеточные почки эпителиальных клеток и затем просачивается вдоль подкладочных поверхностей альвеол для их увлажнения.


 2Легочной отек.

Отек легких происходит таким же образом, как и повсюду в организме.Какой-либо фактор, который является причиной повышения давления легочной интерстициальной жидкости, от отрицательного интервала, будет вызывать внезапное заполнение легочных интерстициальных пространств и в более выраженных случаях даже альвеолы большими количествами свободной жидкости.

Обычные причины легочного отека:

1. Недостаточность левого сердца или митральное клапанное заболевание с последующим большим возрастанием давления в легочных капиллярах и заполнением интерстициальных пространств.

2. Повреждение легочной капиллярной мембраны, вызванное вдыханием вредных веществ, таких, как газообразный хлор и газообразная двуокись серы.

3. Понижение коллоидно-осмотического давления плазмы достаточно низкого уровня, чтобы жидкость пропотевала из


- 36 -


крови в легочные интерстициальные пространства (происходит только редко).


 2Легочной отек "интерстициальной жидкости"

2и легочной "альвеолярный" отек.

Объем интерстициальной жидкости в легких обычно не может повышаться более, чем на 50% (что представляет менее 100 мл жидкости), до разрыва альвеолярных эпителиальных мембран и жидкость начинает протекать из интерстициальных пространств в альвеолы.Причиной этого является просто почти бесконечно малая сила натяжения легочного альвеолярного эпителия; то есть какое-либо положительное давление в пространствах интерстициальной жидкости, по-видимому, является причиной немедленного разрыва альвеолярного эпителия.

Таким образом, за исключением самых мягких случаев легочного отека, отечная жидкость всегда поступает в альвеолы; если этот отек становится достаточно выраженным, то может наступить смерть вследствие удушения, о чем уже говорилось в главах 26 и 27.


 2Фактор безопасности против легочного отека.

Все факторы, которые могут предотвращать отеки в периферических тканях, также могут предотвращать отеки в легких.То есть до наступления положительного давления в интерстициальной жидкости и должны быть преодолены все следующие факторы:

1. нормальная отрицательность давления интерстициальной жидкости в легких;

2. лимфатическое прокачивание жидкости из интерстициальных пространств;

3. повышение осмоса жидкости в легочные капилляры, вызванное уменьшением белка в интерстициальной жидкости, когда возрастает поток лимфы.

В опытах на животных показано, что давление в легочных капиллярах в норме должно возрастать до величины, по крайней мере, равной коллоидно-осмотическому давлению плазмы до наступления выраженного легочного отека.Таким образом, у человека, у которого в норме коллоидно-осмотическое давление плазмы составляет 28 мм рт.ст., можно предсказать, что ле-


- 37 -


гочное капиллярное давление должно возрастать от нормального уровня 7 мм рт.ст. до более 28, чтобы вызвать легочной отек, что дает фактор безопасности против отека, равный примерно 21 мм рт.ст.


 2Фактор безопасности в хронических условиях.

Когда давление в легочных капиллярах хронически повышено,(по меньшей мере, две недели), то легкие становятся даже более устойчивы по отношению к отеку, потому что лимфатические сосуды сильно расширяются, повышается их способность переносить жидкость из интерстициальных пространств в 10 раз.Таким образом, у больных с хроническим митральным стенозом нередко развивается легочное капиллярное давление до 40-45 мм рт.ст. без существенного легочного отека.

Таким образом, при хроническом отеке легких, фактор безопасности против отека может нарастать до 35-40 мм рт.ст., по сравнению с нормальным значением 21 мм, при наличии острых состояний.


 2Скорость наступления смерти при

2остром легочном отеке.

Когда легочное капиллярное давление превосходит уровень фактора безопасности,летальный легочной отек может развиваться в течение нескольких часов, если это давление слегка превышает фактор безопасности, и в течение 20-30 минут, если оно превышает 25-30 мм рт.ст. над фактором безопасности.Таким образом, при наличии острой левосердечной недостаточности, при которой легочное капиллярное давление вдруг повышается до 50 мм рт.ст., смерть часто происходит в течение 30 минут от острого легочного отека.


Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.