RSS    

   Дипломная работа: Использование алгоритмов искусственного интеллекта в процессе построения UFO-моделей

Характерные черты подземного транспорта:

–  сравнительно небольшие расстояния транспортирования в подземных условиях при значительных объёмах перевозки;

–  неравномерность грузопотоков;

–  широкая разветвлённость транспортных магистралей;

–  наличие в одной магистрали нескольких видов транспорта и необходимость перегрузок в местах сопряжения;

–  многозвенность транспорта, работающего в горизонтальных и наклонных выработках в стеснённых условиях при значительной запылённости, влажности и загазованности окружающей среды.

Основные виды подземного транспорта: конвейерный и локомотивный.

Конвейерный транспорт характеризуется:

–  высокой производительностью, связанной с поточностью;

–  низкой трудоёмкостью обслуживания;

–  высокой надёжностью;

–  низким уровнем травматизма обслуживающего персонала;

–  способностью транспортировать груз, как по горизонтальным, так и по наклонным выработкам;

–  удобством сопряжения с очистными забоями.

Недостатки конвейерного транспорта:

–  относительно высокие капитальные и эксплуатационные затраты;

–  неприспособленность к транспортированию крупнокусковых и абразивных грузов;

–  низкая технологическая гибкость.

Локомотивный транспорт характеризуется

–  многофункциональностью;

–  практически неограниченной производительностью;

–  высокой экономичностью;

–  маневренностью;

–  высоким коэффициентом готовности.

Недостатки локомотивного транспорта:

–  цикличность

–  зависимость производительности от уровня организации

–  ограниченность применения по углам наклона

–  наличие сложного аккумуляторного хозяйства при использовании аккумуляторных электровозов.

Существуют различные системы подготовки и вскрытия шахтного поля. Одной из них является панельная система подготовки с отработкой длинными столбами по простиранию.

При панельной системе подготовки применяется следующая схема транспорта. Отбитый уголь по призабойному скребковому конвейеру через перегружатель доставляется на ярусный штрек. В зависимости от мощности забоя, могут быть применены 2 последовательно соединённые конвейера 2ЛТ80 и 2Л80 или один 1ЛТ100 на всю длину ярусного штрека. Далее уголь подаётся на панельный конвейерный уклон, где, в зависимости от нагрузки, могут быть применены уклонные ленточные конвейеры 1ЛУ100, 2ЛУ100 или 2ЛУ120В. В месте сопряжения уклона и главного полевого транспортного штрека оборудуется горный бункер ёмкостью 100-150 т. По главному штреку транспортирование осуществляется локомотивной откаткой. Для доставки материалов и оборудования к очистному забою по ярусным штрекам предусматривается установка грузо-людской монорельсовой дороги ДМКМ. Для обслуживания конвейера на конвейерном уклоне устанавливается монорельсовая дорога.

4.3 UFO-модель шахтной транспортной системы

Контекстная модель шахтной транспортной системы показана на рис. 4.1.

Рисунок 4.1 – Контекстная модель шахтной транспортной системы

В процессе построения декомпозиции контекстной модели шахтной транспортной системы муравей может пользоваться библиотекой компонентов, основные элементы которой представлены на рис. 4.2.

Рисунок 4.2 – Основные элементы библиотеки компонентов

Первоначально муравей находится в добывающем забое. Если муравей выбрал для транспортировки отбитого угля компонент "Конвейер 1ЛТ100", то диаграмма декомпозиции контекстной модели шахтной транспортной системы примет следующий вид (рис. 4.3).

Рисунок 4.3 – Первый шаг муравья

Далее муравей может выбрать уклонный ленточный конвейер 1ЛУ100. В этом случае диаграмма декомпозиции контекстной модели шахтной транспортной системы примет такой вид, как показано на рис. 4.4.

Рисунок 4.4 – Второй шаг муравья

На последнем шаге муравей выбирает локомотивную откатку. В результате получается такая диаграмма декомпозиции контекстной модели шахтной транспортной системы, как показано на рис. 4.5.

Рисунок 4.5 – Третий шаг муравья

Если бы на первом шаге муравей выбрал вместо конвейера 1ЛТ100 конвейер 2ЛТ80, а вместо конвейера 1ЛУ100 конвейер 2ЛУ120В, то в результате получилась бы диаграмма декомпозиции контекстной модели шахтной транспортной системы, показанная на рис. 4.6.


Рисунок 4.6 – Диаграмма декомпозиции контекстной модели


Выводы

В процессе выполнения магистерской аттестационной работы получены следующие результаты:

–  проанализированы современные технологии построения систем;

–  проанализированы прикладные методы и технологии искусственного интеллекта:

1)  нейронные сети;

2)  генетические алгоритмы;

3)  системы, основанные на продукционных правилах;

4)  нечеткая логика;

5)  умные агенты;

6)  алгоритм муравья.

–  осуществлена адаптация алгоритма муравья к задаче построения UFO-модели из заданных компонентов:

1)  начальное размещение муравья;

2)  правила соединения муравьем UFO-компонентов;

3)  перемещение муравья из входа и выхода контекстной диаграммы;

4)  перемещение муравья из входа и выхода UFO-компонента;

5)  разрешение конфликтов при перемещении нескольких муравьев.

–  разработан пример использования Microsoft Excel в процессе построения UFO-модели из заданных компонентов на основе алгоритма муравья;

–  полученные результаты применены в процессе UFO-моделирования шахтной транспортной системы.

Полученные результаты можно использовать в процессе UFO-анализа.

Среди возможных направлений развития следует отметить перспективность исследования возможности применения других алгоритмов искусственного интеллекта в процессе UFO-анализа. Также направлением развития может быть внедрение полученных результатов в CASE-инструментарии, используемые в процессе моделирования систем.

Результаты работы апробированы на IV-м Международном научно-практическом форуме "Информационные технологии и кибернетика 2006", который проходил в Днепропетровске 27-28 апреля 2006 г., и опубликованы в сборнике докладов и тезисов этого форума [44].


Перечень ссылок

1. Лямец В.И., Тевяшев А.Д. Системный анализ. Вводный курс. – Харьков: ХТУРЭ, 1998. – 252 с.

2. Давыдов А.Н., Судов Е.В., Якунина О.В. Применение расширенной идеологии IDEF для анализа и реинжиниринга бизнес-процессов в производственных и организационных системах // Проблемы продвижения продукций и технологий на внешний рынок. Специальный выпуск, 1997. – С. 23-27.

3. Информационные технологии организационного управления сложными социотехническими системами / О.Е. Федорович, Н.В. Нечипорук, Е.А. Дружинин, А.В. Прохоров. – Харьков: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т", 2004. – 295 с.

4. Емельянов В.В., Урусов А.В. IDEF-RDO: имитационный анализ функциональной структуры сложных систем // Программные продукты и системы. – 1997. – № 3. – С. 13-18.

5. Калянов Г.Н. Консалтинг при автоматизации предприятий. – М.: Синтег, 1997. – 316 с.

6. Вендров А.М. CASE-технологии. Современные методы и средства проектирования информационных систем. – М.: Финансы и статистика, 1998. – 176 с.

7. Бондаренко М.Ф., Маторин С.И., Ельчанинов Д.Б. Системная технология моделирования информационных и организационных систем: Учебное пособие. – Харьков: ХНУРЭ, 2005. – 116 с.

8. Емельянов В.В., Попов Э.В. Интеллектуальное имитационное моделирование в реинжиниринге бизнес-процессов // Программные продукты и системы. – 1998. – № 3. – С. 3-10.

9. Маклаков С.В. Моделирование бизнес процессов с BPwin 4.0. – М.: Диалог-МИФИ, 2002. – 224 с.

10. Маклаков С.В. BPwin, ERwin. CASE-средства разработки информационных систем. – М.: Диалог-Мифи, 1999. – 295 с.

11. Маторин С.И. Анализ и моделирование бизнес-систем: системологическая объектно-ориентированная технология. – Харьков: ХНУРЭ, 2002. – 322 с.

12. Бондаренко М.Ф., Соловьева Е.А., Маторин С.И., Ельчанинов Д.Б. Системологическая технология моделирования информационных и организационных систем: Учебное пособие. – Харьков: ХНУРЭ, 2005. – 136 с.

13. Маторин В.С., Маторин С.И., Полунин Р.А., Попов А.С. Знаниеориентированный CASE-инструментарий автоматизации UFO-анализа // Проблемы программирования. – 2002. – №1-2. – С. 469-476.

14. Маторин С.И., Ельчанинов Д.Б. Применение теории паттернов для формализации системологического УФО-анализа // Научно-техническая информация. Серия 2. – 2002. – №11. – С. 1-8.

15. Джонс М.Т. Программирование искусственного интеллекта в приложениях. – М.: ДМК Пресс, 2004. – 312 с.

16. Хьюбел Д. Глаз, мозг, зрение. – М.: Мир, 1990. – 239 с.

17. Pulsed neural networks / by W. Maas and C.M. Bishop eds. – MIT Press. – 1999. – 408 p.

18. Lin C.T. Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. – Upper Saddle Rever, New Jersey: Prentice Hall PTR, 1997. – 786 p.

19. Цыпкин Я.З. Основы теории обучающихся систем. – М.: Наука, 1970. – 252 с.

20. Hertz J. Introduction to the theory of neural computation. – Redwood City: Addison-Wesley Publishing Company, 1996. – 327 p.

21. Kohonen T. Self-organizing Maps. – Berlin: Springer-Verlag, 1995. –363 p.

22. Приобретение знаний / Под ред. С. Осуги, Ю. Саэки; Пер. с япон. – М.: Мир, 1990. – 304 с.

23. Огнев И.В. Интеллектуальные системы ассоциативной памяти. – М.: Радио и связь, 1996. – 176 с.

24. Kung S.Y. Digital Neural Networks. – Engewood Cliffs, New Jersey: PTR Prentice Hall, 1994. – 418 p.

25. Корнеев В.В., Гареев А.Ф., Васютин С.В., Райх В.В. Базы данных. Интеллектуальная обработка информации. – М.: "Нолидж". 2000. – 352 с.

26. Люгер Д.Ф. Искусственный интеллект: стратегии и методы решения сложных проблем. – М.: "Вильямс", 2003. – 864 с.

27. Goldberg D.E. Genetic algorithms in search, optimization and machine learning. – Adison Wesley, Reading, MA, 1989. – 308 p.

28. Эволюционные вычисления и генетические алгоритмы. Обозрение прикладной и промышленной математики. Выпуск 5.– М.: "ТВП".– Т.3.– 1996.– 204 с.

29. Ельчанинов Д.Б., Кривуля Г.Ф., Лобода В.Г., Механа Сами Применение генетических алгоритмов и многоуровневых сетей Петри при проектировании компьютерной техники // Радиоэлектроника и информатика, 2002. – № 1. – С. 89-97.

30. Петросов Д.А. Лобода В.Г., Ельчанинов Д.Б. Представление генетических алгоритмов сетями Петри в задачах проектирования компьютерной техники // Материалы научно-практической конференции "Информационные технологии – в науку и образование". Харьков: ХНУРЭ, 2005. – С. 48-51.

31. Ельчанинов Д.Б., Петросов Д.А., Механа Сами Применение генетических алгоритмов при проектировании компьютерной техники // Вестник Херсонского государственного университета. № 2 (18). 2003. – С. 35-38.

32. Григорьев А.В. Представление генетических алгоритмов сетями Петри в задаче размещения. Автореф. дис. канд. техн. наук. – Казань, 2002. – 20 c.

33. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности / Г.К. Вороновский, К.В. Махотило, С.Н. Петрашев, С.А. Сергеев. – Х.: ОСНОВА, 1997. – 112 с.

34. De Jong K.A. Genetic Algorithms: A 10 Year Perspective // In: Procs of the First Int. Conf. on Genetic Algorithms, 1985. – P. 167-177.

35. Искусственный интеллект [В 3-х кн.]. – Кн. 2. Модели и методы: Справочник / Под. ред. Д.А. Поспелова. – М.: Радио и связь, 1990. – 304 с.

36. Бакаев А.А., Гриценко В.И., Козлов Д.Н. Экспертные системы и логическое программирование. – Киев: Наук. думка, 1992. – 220 с.

37. Бондарев В.Н., Аде Ф.Г. Искусственный интеллект. – Севастополь: Изд-во СевНТУ, 2002. – 615 с.

38. Обработка нечеткой информации в системах принятия решений / А.Н. Борисов, А.В. Алексеев, Г.В. Меркурьев. – М.: Радио и связь, 1989. – 304 с.

39. Поспелов Д.А. Ситуационное управление: теория и практика. – М.: Наука, 1986. – 288 с.

40. Джексон П. Введение в экспертные системы. – М.: "Вильямс", 2001. – 624 с.

41. Sycara P.K. Multiagent Systems // AI MAGAZINE. – 1998. – V. 19. – № 2. – P. 79-93.

42. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. – СПб: Питер, 2000. – 384 с.

43. Marco Dorigo, Vittorio Maniezzo, Alberto Colorni. The Ant System: Optimization by a colony of cooperating agents. // IEEE Transactions on Systems, Man and Cybernetics – Part B, Vol. 26, No.1, 1996. – P. 1-13.

44. Сергиенко И.Н. Алгоритмы искусственного интеллекта в процессе организационного моделирования // Информационные технологии и кибернетика 2006: Сборник докладов и тезисов IV-го Международного научно-практического форума (Днепропетровск, 27-28 апреля 2006 г.). – Днепропетровск: ИТМ, 2006. – С. 62-63.

45. Петров В.Н. Информационные системы. – СПб.: Питер, 2002. – 688 с.

46. Подземный транспорт шахт и рудников: Справочник / Под общей редакцией Г.Я. Пейсаховича, И.П. Ремизова. – М.: Недра, 1985. – 304 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.