RSS    

   Реферат: Особенности конструирования радиотехнической аппаратуры

Эпоксидный стеклотекстолит - это материал на основе стеклоткани, пропитанный эпоксидной смолой. В этом материале сочетаются высокая механическая прочность и хорошие электрические свойства.

Прочность на изгиб и ударная вязкость печатной платы должны быть достаточно высокими, чтобы плата без повреждений могла быть нагружена установленными на ней элементами с большой массой.

Как правило, слоистые пластики на фенольном, а также эпоксидном гетинаксе не используются в платах с металлизированными отверстиями. В таких платах на стенки отверстий наносится тонкий слой меди. Так как температурный коэффициент расширения меди в 6-12 раз меньше, чем у фенольного гетинакса, имеется определенный риск образования трещин в металлизированном слое на стенках отверстий при термоударе, которому подвергается печатная плата в машине для групповой пайки.

Трещина в металлизированном слое на стенках отверстий резко снижает надежность соединения. В случае применения эпоксидного стеклотекстолита отношение температурных коэффициентов расширения примерно равно трем, и риск образования трещин в отверстиях достаточно мал.

Из сопоставления характеристик оснований (см. дальше) следует, что во всех отношениях (за исключением стоимости) основания из эпоксидного стеклотекстолита превосходят основания из гетинакса.

Печатные платы из эпоксидного стеклотекстолита характеризуются меньшей деформацией, чем печатные платы из фенольного и эпоксидного гетинакса; последние имеют степень деформации в десять раз больше, чем стеклотекстолит.

Некоторые характеристики различных типов слоистых пластиков представлены в таблице 1.

Тип

Максимальная рабочая температура, 0C

Время пайки при 2600 С, сек

Сопротивление изоляции, МОм Объемное сопротивле­ние, МОм Диэлектри­ческая постоянная, e
Фенольный гетинакс 110-120 5 1 000

1·104

5,3
Эпоксидный гетинакс 110-120 10 1 000

1·105

4,8
Эпоксидный стеклотекстолит 130-150 20 10 000

1·106

5,4

Сравнивая эти характеристики, делаем вывод, что для изготовления двусторонней печатной платы следует применять только эпоксидный стеклотекстолит.

В качестве фольги, используемой для фольгирования диэлектрического основания можно использовать медную, алюминиевую или никелевую фольгу. Однако, алюминиевая фольга уступает медной из-за плохой паяемости, а никелевая - из-за высокой стоимости. Поэтому в качестве фольги выби

раем медь.

Медная фольга выпускается различной толщины. Стандартные толщины фольги наиболее широкого применения - 17,5; 35; 50; 70; 105 мкм. Во время травления меди по толщине травитель воздействует также на медную фольгу со стороны боковых кромок под фоторезистом, вызывая так называемое подтравливание. Чтобы его уменьшить обычно применяют более тонкую медную фольгу толщиной 35 и 17,5 мкм. Поэтому выбираем медную фольгу толщиной 35 мкм.

Исходя из всех вышеперечисленных сравнений для изготовления двусторонней печатной платы позитивным комбинированным способом выбираем фольгированный стеклотекстолит СФ-2-35.

5. Техническое описание конструкции

Принципиальная схема УМЗЧ приведена на рис. 2. Каскад предварительного

усиления вы­полнен на быстродействующем ОУ DAI (К544УД2Б), который наряду с необходимым усиле­нием по напряжению обеспе­чивает   устойчивую   работу усилителя с глубокой ООС. Резистор обратной связи R5 и резистор R1 определяют коэф­фициент усиления усилителя. Выходной каскад выполнен на транзисторах VT1—VT8. Его работа была рассмотрена выше. Конденсаторы  С6—С9  кор­ректируют фазовую и частот­ную характеристики каскада. Стабилитроны VDI, VD2 ста­билизируют напряжение пита­ния ОУ, которое одновременно используется для создания не­обходимого напряжения смеще­ния выходного каскада.

Делитель выходного напря­жения ОУ R6, R7, диоды VD3— VD6 и резистор R4 образуют цепь нелинейной ООС, которая уменьшает коэффициент усиления ОУ, когда выходное напря­жение усилителя мощности до­стигнет своего максимального значения. В результате умень­шается  глубина  насыщения транзисторов VT1, VT2 и сни­жается вероятность возникнове­ния сквозного тока в выходном каскаде.   Конденсаторы  С4, С5 — корректирующие. С увели­чением емкости конденсатора С5 растет устойчивость усили­теля, но одновременно увели­чиваются нелинейные искаже­ния, особенно на высших звуко­вых частотах.

Усилитель сохраняет работо­способность  при  снижении напряжения питания до ±25 В. Возможно и дальнейшее сниже­ние напряжения питания вплоть до ±15 и даже до ±12 В при уменьшении сопротивления ре­зисторов R2, R3 или непосред­ственном подключении выводов питания ОУ к общему источ­нику питания и исключении стабилитронов VDI, VD2.

Снижение напряжения пита­ния приводит к уменьшению максимальной выходной мощно­сти усилителя прямо пропор­ционально квадрату изменения напряжения питания, т. е. при уменьшении напряжения пита­ния в два раза максимальная выходная мощность усилителя уменьшается в четыре раза.

Усилитель не имеет защиты от короткого замыкания и пере­грузок. Эти функции выполняет блок питания.

В журнале «Радио» высказы­валось мнение о необходимости питания УМЗЧ от стабилизи­рованного источника питания для обеспечения более есте­ственного его звучания. Дей­ствительно, при максимальной выходной мощности усилителя пульсации напряжения неста­билизированного источника мо­гут достигать нескольких вольт.

При этом напряжение питания может существенно снижаться за счет разряда конденсаторов фильтра. Это незаметно при пиковых значениях выходного напряжения на высших звуко­вых частотах, благодаря доста­точной емкости фильтрующих конденсаторов, но сказывается при усилении низкочастотных составляющих большого уровня, так как в музыкальном сигнале они имеют большую длитель­ность. В результате фильтрующие конденсаторы успевают разряжаться, снижается напряжение питания, а значит, и максимальная выходная мощность усилителя. Если же снижение напряжения питания приводит к уменьшению тока покоя вы­ходного каскада усилителя, то это может приводить и к возник­новению дополнительных нели­нейных искажений.

С другой стороны, использо­вание стабилизированного ис­точника питания, построенного по обычной схеме параметри­ческого стабилизатора, увели­чивает потребляемую им от сети мощность и требует применения сетевого трансформатора боль­шей массы и габаритов. По­мимо этого, возникает необходи­мость отвода тепла, рассеива­емого выходными транзисто­рами стабилизатора. Причем за­частую мощность, рассеиваемая выходными транзисторами УМЗЧ, равна мощности, рассеиваемой выходными транзисторами ста­билизатора, т. е. половина мощ­ности тратится впустую. Им­пульсные стабилизаторы напря­жения имеют высокий КПД, но достаточно сложны в изго­товлении, имеют большой уро­вень высокочастотных помех и не всегда надежны.

Если к блоку питания не предъявляется жестких требо­ваний по стабильности напряже­ния и уровню пульсации, что характеризует, в частности, опи­санный выше усилитель мощно­сти, то в качестве источника питания можно использовать обычный двуполярный  блок питания, принципиальная схема которого показана на рис. 3.

Мощные составные транзисторы VT7 и VT8, включенные по схеме эмиттерных повтори­телей, обеспечивают достаточно хорошую фильтрацию пульса­ции напряжения питания с ча­стотой сети и стабилизацию выходного напряжения благо­даря установленным в цепи баз транзисторов   стабилитронам VD5 – VD10. Элементы LI, L2, R16, R17, С11, С12 устраняют возможность    возникновения высокочастотной    генерации, склонность к которой объясня­ется большим коэффициентом усиления по току составных транзисторов.

Величина переменного напря­жения, поступающего от сете­вого трансформатора, выбрана такой, чтобы при максимальной выходной мощности УМЗЧ (что соответствует току в нагрузке 4А) напряжение на конден­саторах фильтра С1—С8 сни­жалась примерно до 46...45 В. В этом случае падение напряже­ния на транзисторах VT7, VT8 не будет превышать 4 В, а рас­сеиваемая транзисторами мощ­ность составит 16 Вт. При уменьшении мощности, потреб­ляемой от источника питания, увеличивается падение напря­жения на транзисторах VT7, VT8, но рассеиваемая на них мощность остается постоянной из-за уменьшения потребляемо­го тока. Блок питания работает как стабилизатор напряжения при малых и средних токах нагрузки, а при максимальном токе — как   транзисторный фильтр. В таком режиме его выходное напряжение может снижаться до 42-41В, уровень пульсаций на выходе достигает значения 200 мВ, КПД равен 90 %.

Как показало макетирование, плавкие предохранители не мо­гут защитить усилитель и блок питания от перегрузок по току из-за своей инерционности. По этой причине было применено устройство быстродействующей защиты от короткого замыкания и превышения допустимого тока нагрузки, собранное на тран­зисторах VTI—VT6. Причем функции защиты при перегруз­ках положительной полярности выполняют транзисторы VTI, VT2, VT5, резисторы R1, R3, R5. R7 — R9, R13 и конден­сатор С9, а отрицательной — транзисторы VT4, VT3, VT6, резисторы R2, R4, R6, RIO— R12, R14 и конденсатор С10. Рассмотрим работу устрой­ства при перегрузках положи­тельной полярности. В исходном состоянии при номинальной на­грузке все транзисторы устрой­ства защиты закрыты. При уве­личении тока нагрузки начинает расти падение напряжения на резисторе R7, и если оно превы­сит допустимое значение, начи­нает открываться транзистор VTI, а вслед за ним и тран­зисторы VT2 и VT5. Последние уменьшают напряжение на базе регулирующего    транзистора VT7, а значит, и напряжение на выходе блока питания. При этом за счет положительной обратной связи, обеспечиваемой резисто­ром R13, уменьшение напряже­ния на выходе блока питания приводит к ускорению дальней­шего открывания транзисторов VTI, VT2,VT5 и быстрому закрыванию транзистора VT7. Если сопротивление резистора положительной обратной связи R13 мало, то после срабатыва­ния устройства защиты напря­жение на выходе блока питания не восстанавливается даже пос­ле отключения нагрузки. В этом режиме необходимо было бы предусмотреть кнопку запуска, отключающую, например, на ко­роткое время резистор R13 пос­ле срабатывания защиты и в мо­мент включения блока питания. Однако, если сопротивление ре­зистора R13 выбрать таким, чтобы при коротком замыкании нагрузки ток не был равен нулю, то напряжение на выходе блока питания будет восстанавливать­ся после срабатывания устройства защиты при уменьшении тока нагрузки до безопасной величины.

Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.