RSS    

   Реферат: Решение задач линейной оптимизации симплекс – методом

Выразим теперь старые переменные через новые

,                                                                                           (2.7)

и подставим их в линейную форму (2.4) и в неравенства (2.5), (2.6). Получим

                   , где .

Раскрывая скобки и учитывая, что

                                                  (2.8),

можем окончательно записать:

                                                                     (2.9)

                                                            (2.10)

          ,   где                                                                                                              (2.11)

Путем несложных преобразований задачу (1.2.1), (1.2.2) свели к задаче (2.9) - (2.11) с меньшим числом ограничений.

Для записи неравенств (2.10) в виде уравнений введем неотрицательные дополнительные переменные , и задача (2.9) - (2.11) запишется в следующей эквивалентной форме:

                                                                    (2.12)

                          (2.13)

          ,   где                                                                                

Задача (2.12), (2.13) имеет каноническую форму.

3. Нахождение начального опорного плана с помощью L-задачи

Начальный опорный план задачи (2.1) - (2.3), записанной в канонической форме, достаточно легко может быть найден с помощью вспомогательной задачи (L-задачи):

                                                                                      (3.1)

                                                                              (3.2)

                                                                                            (3.3)

Начальный опорный план задачи (3.1) - (3.3) известен. Он состоит из компонент

                                                  

и имеет единичный базис Б = = E.

Решая вспомогательную задачу первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4), в силу ограниченности линейной формы сверху на множестве своих планов () получим, что процесс решения через конечное число шагов приведет к оптимальному опорному плану вспомогательной задачи.

Пусть - оптимальный опорный план вспомогательной задачи. Тогда  является опорным планом исходной задачи. Действительно, все дополнительные переменные . Значит, удовлетворяет условиям исходной задачи, т.е. является некоторым планом задачи (2.12) - (2.13). По построению план является также опорным.

3.1. Постановка L-задачи

Вспомогательная задача для нахождения начального опорного плана задачи (2.12) - (2.13) в канонической форме состоит в следующем.

Требуется обратить в максимум

при условиях

,   где  .


рассматривая в качестве исходного опорного плана план

Здесь добавление только одной дополнительной переменной  (вместо пяти) обусловлено тем, что исходная задача уже содержит четыре единичных вектора условий А4, А5, А6, А7.

3.2. Решение L-задачи

Решение L-задачи будем проводить в соответствии с первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4). Составим таблицу, соответствующую исходному опорному плану (0-й итерации).

Т.к. Б0 = - базис, соответствующий известному опорному плану, является единичной матрицей, то коэффициенты разложения векторов Аj по базису Б0

.

Значение линейной формы  и оценки  для заполнения (m+1)-й строки таблицы определяются следующими соотношениями:

,

.

Отсюда получим:

;

;

;

.

Весь процесс решения задачи приведен в табл. 3.2.1, которая состоит из 2 частей, отвечающих 0-й (исходная таблица) и 1-й итерациям.

Заполняем таблицу 0-й итерации.

Среди оценок  имеются отрицательные. Значит, исходный опорный план не является оптимальным. Перейдем к новому базису. В базис будет введен вектор А1 с наименьшей оценкой . Значения t вычисляются для всех позиций столбца t (т.к. все элементы разрешающего столбца положительны). Наименьший элемент  достигается на пятой позиции базиса. Значит, пятая строка является разрешающей строкой, и вектор А9 подлежит исключению из базиса.

Составим таблицу, отвечающую первой итерации.

В столбце Бх, в пятой позиции базиса место вектора А9 занимает вектор А1. Соответствующий ему коэффициент линейной формы С41 = 0 помещаем в столбец Сх. Главная часть таблицы 1 заполняется по данным таблицы 0 в соответствии с рекуррентными формулами. Так как все , то опорный план  является решением L-задачи. Наибольшее значение линейной формы равно .

Таблица 3.2.1

3.3. Формирование начального опорного плана исходной задачи линейного программирования из оптимального плана L-задачи

Поскольку , где  - оптимальный опорный план L-задачи, то   является начальным опорным планом исходной задачи (2.12) - (2.13).

4. Решение исходной задачи I алгоритмом симплекс-метода

Описание I алгоритма

Симплекс-метод позволяет, отправляясь от некоторого исходного опорного плана и постепенно улучшая его, получить через конечное число итераций оптимальный план или убедиться в неразрешимости задачи. Каждой итерации соответствует переход от одной таблицы алгоритма к следующей. Таблица, отвечающая опорному плану в ν-й итерации имеет вид табл. 4.1.

Таблица 4.1      

C

N

B

t

1

l

m

m+1

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.