RSS    

β-фаза,

фиксируемая

закалкой

 

β-фаза, не фиксируемая

закалкой

 

     H

 

Si                Cu

Ag               Au

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Эл-ты

внедрения

 

Пути повышения жаропрочности и ресурса.

Повышение жаропрочности и ресурса деталей двигателей – одна из важнейших проблем, для успешного решения которой необходимо постоянное повышение жаропрочности сплавов, улучшение их качества и усовершенствовании технологии изготовления деталей.

Для повышения ресурса необходимо знать величины длительной прочности, ползучести и усталости материалов для соответствующих рабочих температур и срока их службы.

С течением времени, как известно, прочность деталей, работающих под нагрузкой при повышенных температурах, понижается, а следовательно, снижается и запас прочности деталей. Чем выше температура эксплуатации деталей, тем быстрее уменьшается длительная прочность, а следовательно, и запас прочности.

Увеличение ресурса означает и увеличение числа запусков и остановок. Поэтому при выборе материалов необходимо знать их длительную прочность и усталость при циклическом нагружении.

На ресурс также сильно влияет технология изготовления деталей, например наличие остаточных растягивающих напряжений может снижать усталостную прочность в 2 – 3 раза.

Улучшение методов термической и механической обработки, позволяющее получать детали с минимальными остаточными напряжениями, является важным фактором в повышении их ресурса.

Фреттинг-коррозия, возникающая при механическом трении, значительно снижает усталостную прочность, поэтому разрабатываются методы повышения фрикционных свойств, ресурса и надежности (металлизация, смазки типа ВАП и др.).

При использовании методов поверхностного упрочнения  (наклеп), создающих в поверхностном слое напряжения сжатия и увеличивающих твердость, повышаются прочность и долговечность деталей, особенно их усталостная прочность.

Титановые сплавы для деталей компрессоров начали применяться в отечественной практике с 1957 г в небольшом количестве главным образом на ТРД военного назначения, где требовалось обеспечить надежную работу деталей с ресурсом 100 – 200 ч.

За последние годы увеличился объем применения титановых сплавов в компрессорах авиадвигателей гражданских самолетов длительного ресурса. При этом потребовалось обеспечение надежной работы деталей в течение 2000 ч и более.

Увеличение ресурса деталей из титановых сплавов достигается путем:

А) повышения чистоты металла, т. е. снижения в сплавах содержания примесей;

Б) улучшения технологии изготовления полуфабрикатов для получения более однородной структуры;

В) применения упрочняющих режимов термической или термомеханической обработки деталей;

Г) выбор рационального легирования при разработке новых более жаропрочных сплавов;

Д) использования стабилизирующего отжига деталей;

Е) поверхностного упрочнения деталей;

Повышение чистоты сплавов.

В связи с увеличением ресурса деталей из титановых сплавов повышаются требования к качеству полуфабрикатов, в частности к чистоте металла в отношении примесей. Одна из наиболее вредных примесей в титановых сплавах – кислород, так как повышенное содержание его может привести к охрупчиванию. Наиболее ярко отрицательное влияние кислорода проявляется при изучении термической стабильности титановых сплавов: чем выше содержание кислорода в сплаве, тем быстрее и при более низкой температуре наблюдается охрупчивание.

Некоторая потеря прочности за счет снижения вредных примесей в титане с успехом компенсируется повышением в сплавах содержания легирующих элементов.

Дополнительное легирование сплава ВТ3-1 (в связи с повышением чистоты губчатого титана) позволило значительно повысить характеристики жаропрочности сплава после изотермического отжига: предел длительной 100-ч прочности при 400° С повысился 60· до 78· Па и предел ползучести с 30· до 50· Па, а при 450° С на 15 и 65% соответственно. При этом обеспечено повышение термической стабильности сплава.

В настоящее время при выплавке сплавов ВТ3-1, ВТ8, ВТ9, ВТ18 и др. применяется титановая губка марок ТГ-100, ТГ-105, в то время как ранее для этой цели использовалась губка ТГ-155-170. В связи с этим содержание примесей значительно снизилось, а именно: кислорода в 2,5 раза, железа в 3 – 3,5 раза, кремния, углерода, азота в 2 раза. Можно предположить, что при дальнейшем повышении качества губки твердость по Бринеллю ее в ближайшее время достигнет 80· – 90· Па.

Было установлено, что для повышения термической стабильности указанных сплавов при рабочих температурах и ресурсе 2000 ч и более содержание кислорода не должно превышать 0,15% в сплаве ВТ3-1 и 0,12% - в сплавах ВТ8, ВТ9, ВТ18.

Получение оптимальной микроструктуры.

Как известно, структура титановых сплавов формируется в процессе горячей деформации и в отличие от стали тип структуры не претерпевает существенных изменений в процессе термической обработки. В связи c этим особое внимание должно быть уделено схемам и режимам деформации, обеспечивающим получение требуемой структуры в полуфабрикатах.

Установлено, что микроструктуры равноосного типа (I тип) и типа корзиночного плетения (II тип) имеют неоспоримое преимущество перед структурой игольчатого типа (III тип) по термической стабильности и усталостной прочности.

Однако по характеристикам жаропрочности микроструктура  I  типа уступает микроструктурам II  и III типа.

 Поэтому в зависимости от назначения полуфабриката оговаривается тот или иной тип структуры, обеспечивающий оптимальное сочетание всего комплекса свойств для требуемого ресурса работы деталей.

Повышение прочностных свойств термической обработкой.

Поскольку двухфазные (α+β)-титановые сплавы могут упрочняться термической обработкой, имеется возможность дополнительно повысить их прочность.

Оптимальными режимами упрочняющей термической обработки с учетом ресурса 2000 ч являются:

для сплава ВТ3-1 закалка в воду с температуры 850 – 880° С и последующее старение при 550° С в течение 5 ч с охлаждением на воздухе;

для сплава ВТ8 – закалка в воду с температуры 920° С и последующее старение при 550° С в течение 6 ч с охлаждением на воздухе;

для сплава ВТ9 закалка в воду с температуры 925° С и последующее старение при 570° С в течение 2 ч и охлаждение на воздухе.

Были проведены исследования по влиянию упрочняющей термической обработки на механические свойства и структуру сплава ВТ3-1 при температурах 300, 400, 450° С для сплава ВТ8 за 100, 500 и 2000 ч, а также на термическую стабильность после выдержки до 2000 ч.

Эффект упрочнения от термической обработки при кратковременных испытаниях сплава ВТ3-1 сохраняется до 500° С и составляет 25 – 30% по сравнению с изотермическим отжигом, а при 600° С предел прочности закаленного и состаренного материала равен пределу прочности отожженного материала.

Применение упрочняющего режима термической обработки также повышает и пределы длительной прочности за 100 ч на 30% при 300° С, на 25% при 400° С и 15% при 450° С.

С увеличением ресурса от 100 до 2000 ч длительная прочность при 300° С почти не изменяется как после изотермического отжига, так и после закалки и старения. При 400° С закаленный и состаренный материал разупрочняется в большей степени, чем отожженный. Однако абсолютное значение длительной прочности за 2000 ч у закаленных и состаренных образцов выше, чем у отожженных. Наиболее резко снижается длительная прочность при 450° С, и при испытании в течение 2000 ч преимуществ от термического упрочнения не остается.

Аналогичная картина наблюдается и при испытании сплава на ползучесть. После упрочняющей термической обработки предел ползучести при 300° С выше на 30% и при 400° С – на 20%, а при 450° С даже ниже, чем у отожженного материала.

Также повышается выносливость гладких образцов при 20 и 400° С на 15 – 20%. При этом после закалки и старения отмечена большая вибрационная чувствительность к надрезу.

После длительной выдержки ( до 30000 ч) при 400° С и испытания образцов при 20° С пластические свойства сплава в отожженном состоянии сохраняются на уровне исходного материала. У сплава, подвергнутого упрочняющей термической обработке, несколько снижаются поперечное сужение и ударная вязкость, однако абсолютное значение после 30000-ч выдержки остаются достаточно высокими. С повышением температуры выдержки до 450° С снижается пластичность сплава в упрочненном состоянии после 20000 ч выдержки, поперечное сужение падает с 25 до 15%. Образцы, выдержанные 30000 ч при 400° С и испытанные при той же температуре, имеют более высокие значения прочности по сравнению с исходным состоянием (до нагрева) при сохранении пластичности .

С помощью рентгеноструктурного фазового анализа и электронноструктурного микроисследования установлено, что упрочнение при термической обработке двухфазных (α+β)-сплавов достигается за счет образования  при закалке метастабильных β-, α´´- и α´-фаз и распада их при последующем старении с выделением дисперсных частиц α- и β- фаз.

Установлено весьма интересное явление существенного повышения длительной прочности  сплава ВТ3-1 после предварительной выдержки образцов при меньших нагрузках. Так, при напряжении 80· Па и температуре 400° С образцы разрушаются уже при нагружении, а после предварительной 1500-ч выдержки при 400° С под напряжением 73· Па они выдерживают напряжение 80· Па в течении 2800 ч. Это создает предпосылки для разработки специального режима термической обработки под напряжением для повышения длительной прочности.

Выбор рационального легирования.

Для повышения жаропрочности и ресурса титановых сплавов применяется легирование. При этом очень важно знать при каких условиях и в каких количествах следует добавлять легирующие элементы.

Для повышения ресурса сплава ВТ8 при 450 – 500° С, когда снимается эффект упрочнения от термической обработки, было использовано дополнительное легирование его цирконием (1%).

Легирование сплава ВТ8 цирконием (1%), по данным позволяет значительно повысить его предел ползучести, причем действие добавки циркония при 500 более эффективно, чем при 450° С. С введением 1% циркония при 500° С предел ползучести сплава ВТ8 за 100 ч увеличивается на 70%, за 500 ч – на 90% и за 2000 ч на 100% (с 13· до 26· Па), а при 450° С – повышается на 7 и 27% соответственно.

Стабилизирующий отжиг.

Стабилизирующий отжиг широко применяется для лопаток турбин ГТД с целью снятия напряжений, возникающих на поверхности деталей при механической обработке. Этот отжиг проводят на готовых деталях при температурах, близких к эксплуатационным. Аналогичная обработка была опробована на титановых сплавах, применяемых для лопаток компрессора. Стабилизирующий отжиг проводили в воздушной атмосфере при 550° С в течении 2 ч и изучали его влияние на длительную и усталостную прочность сплавов Вт3-1, ВТ8, ВТ9, и ВТ18. Было установлено, что стабилизирующий отжиг не влияет на свойства сплава ВТ3-1.

Выносливость сплавов ВТ8 и ВТ9 после стабилизирующего отжига повышается на 7 – 15%; длительная прочность этих сплавов не изменяется. Стабилизирующий отжиг сплава ВТ18 позволяет повысить его жаропрочность на 7 – 10%, при этом выносливость не изменяется. То, что стабилизирующий отжиг не влияет на свойства сплава ВТ3-1, можно объяснить устойчивостью β-фазы вследствие применения изотермического отжига. В сплавах ВТ8 и ВТ9, подвергаемых двойному отжигу, из-за меньшей устойчивости β-фазы происходит достаривание сплавов (при стабилизирующем отжиге), что повышает прочность, а следовательно, и выносливость. Так как механическую обработку лопаток компрессоров из титановых сплавов, на финишных операциях проводят вручную, на поверхности лопаток возникают напряжения, разные по знаку и величине. Поэтому рекомендуется все лопатки подвергать стабилизирующему отжигу. Отжиг проводят при температурах 530 – 600° С. Стабилизирующий отжиг обеспечивает повышение выносливости лопаток из титановых сплавов не менее чем на 10 – 20 %.

 

                    

       

 

 

 

Используемая литература.

1.   О. П. Солонина, С. Г. Глазунов. «Жаропрочные титановые сплавы». Москва «Металлургия» 1976 г.

2.  


Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.