RSS    

   Уникальные феномены памяти

p align="left">Мы - не что иное, как система сообщающихся сосудов, по которым движутся потоки разнообразных жидкостей, взаимодействующих между собой. Наша жизнь поддерживается химическими реакциями в водном растворе поступлением питательных веществ в клетки через межклеточную жидкость и удалением отработанных продуктов через нее же.

Раз так, почему бы не попробовать превращать воду находящуюся в нас в целебную?

Вода способна запоминать даже звуки. Президент Токийского института общих проблем доктор Имато Масару. Дает воде "прослушать" мелодию Моцарта, Бетховена или Баха, после чего эту жидкость замораживает и получает изображение. Выяснилось, что оно у каждой мелодии индивидуальное. И, по утверждению Масару, во всех экспериментах каждое из них точно повторяется. Общим является одно - полученные снимки всегда красивы, гармоничны и строго симметричны. А "портрет" металлического рока - сплошной хаос.

Еще одна галерея, созданная Масару, - изображения слов. Такие из них, как "благодарю", "красота", "любовь", "душа", "ангел", "мать Тереза" - радуют глаз изысканным орнаментом. Совсем иная картина с фразами типа "мне больно", "ты дурак", или "я тебя убью" - их изображения чем-то напоминают изображение металлического рока. (см. Приложение№1)

Гипотеза Унгара. Скотофобин - молекула памяти. Американский физиолог Унгар связывал хранение в ЦНС с функцией целого ряда пептидов и белков. Он открыл, выделил из мозга крыс и расшифровал структуру одного такого нейропептида - скотофобина, состоящего из 15 аминокислот. Для того, чтобы отличить вновь синтезируемый при обучении пептид от множества других, имеющихся в мозге, Унгар вырабатывал у крыс неестественный для них условный рефлекс - избегания темноты. Крыса ,как ночное животное, в норме избегает света и стремится в экспериментальном открытом поле скрыться в какую-либо затемненную норку .Но как только она забиралась в темную норку, она получала удар тока. В конце концов такая крыса приучалась избегать темноты ,чем существенно отличалась от своих сородичей, лишенных данного навыка. Из мозга обученных крыс Унгар выделил особый пептид (скотофобин: скотос - темнота, фобия - страх), который никогда не встречался в мозге нормальных животных. Однако вскоре выяснилось, что и скотофобин не явился той молекулой памяти, которая была бы способна записывать ту или иную конкретную информацию. По своей структуре скотофобин оказался похож на молекулу АКТГ, которая также обладала способностью улучшать формирование памяти, но не являлась специфичной ни для одного навыка.

Гипотеза Мак-Коннелла. Им были выполнены знаменитые опыты на белых червях - планариях по "переносу памяти". У планарий вырабатывали условный рефлекс избегания света. Для этого их подвергали действию электрического тока, если, они попадали в освещенный участок специально сконструированной камеры. После выработки устойчивого навыка избегания света планарий умерщвляли, размельчали и затем скармливали порошок "обученных" планарий необученным. После этого у необученных планарий появлялся навык избегания света. Однако, если порошок "обученных" червей предварительно обрабатывали раствором РНК-азы, а затем скармливали его другим необученным планариям, то у них навык избегания света не появлялся. Из результатов этих опытов Мак-Коннелл делал вывод о том, что молекула РНК, являясь носителем информации в ЦНС, способна передавать память на конкретные события. Опыты Мак-Коннелла неоднократно пытались воспроизвести многие исследователи. Результаты чаще не повторялись, однако, несомненно, что существует некая связь между накоплением информации в нейронах и повышением в них содержания РНК.

Гипотеза Хидена. В 50-ых годах шведский исследователь Хиден установил тесную связь между степенью выработки двигательных навыков и содержанием РНК в нейронах соответствующих моторных центров. В ходе обучения содержание РНК в нейронах заметно повышалось. Хиден обнаружил, что нейроны - самые активные продуценты РНК в организме. В одном нейроне содержание РНК может колебаться от 20 до 20 000 пикограмм, причем, нейроны, содержащие наибольшее количество РНК, оказывались ответственными за хранение большого объема информации. На основании этих данных Хиден высказал предположение, что именно молекула РНК является главным нейрохимическим субстратом памяти.

Опыты по изучению активности головного мозга в процессах запоминания и воспроизведения. Ключи к разгадке феномена памяти -- в активности нашего головного мозга. Запоминание и узнавание уже знакомых объектов осуществляется задней и передней областями коры головного мозга.

Человек обладает удивительной возможностью постоянно откладывать получаемую информацию в хранилище своей памяти, даже если затем он не может осознать запомненное. Так считают исследователи Duke University Medical Center researchers, опубликовавшие 24 мая 2006 года в издательстве "Journal of Neuroscience" отчет об изучении мозговой активности человека в процессе запоминания.

Исследователи сначала предъявили 16-ти испытуемым список слов. Затем испытуемые были помещены в устройство, работающего по принципу магнитного резонанса. И им был предъявлен другой список слов, некоторые из которых были из старого списка. Исследователи наблюдали мозговую активность с помощью измерения изменений в кровотоке, выводившихся на сканер, в то время как участники смотрели на список.

Когда участникам исследования встречалось виденное ранее слово, монитор показывал повышенную активность задней области коры больших полушарий, независимо от того, опознали ли они это слово сознательно или нет. Обнаруженная зависимость показывает, что мозг всегда имеет точный ответ, даже если мы не осознаем то, что уже видели слово раньше.

Итак, если у нашего мозга всегда готово правильное решение, почему же мы совершаем ошибку, когда нас просят восстановить последовательность предъявления событий?

Исследователи обнаружили, что, когда испытуемый действительно видел слово впервые, сканер фиксировал повышенную активность в передней области коры -- она была гораздо сильней, чем в задней области, которая отвечает за узнавание уже знакомых слов. Но когда испытуемый ошибочно относил новое слово к старым, активность возрастала в обеих областях коры.

Данные участки коры головного мозга дают нам смешанные сообщения, которые и приводят к ошибкам в процессе узнавания.

Исследования генетической памяти. Памела Сильвер (Pamela Silver) из медицинского колледжа Гарварда (Harvard Medical School) и её коллеги преобразовали геном клетки так, что она смогла запоминать определённые химические воздействия и хранить сигнал о них даже после прекращения "экспозиции".

Данная работа представляет собой один из ярких опытов по синтетической биологии. Учёные давно пробуют конструировать живые системы, создавая для них уникальный генетический код, а эксперименты с клетками, в частности, позволяют проверить, как работает то или иное нововведение.

Сильвер и её команда построили биологическую петлю памяти. Они сконструировали два новых гена, собрав их из нескольких кусочков ДНК, и встроили всё это в геном дрожжевой клетки.

Первый ген активировался, когда клетка подвергалась действию сахара галактоза. Этот ген запускал синтез белка -- фактора транскрипции, который в свою очередь давал команду "старт" второму искусственному гену. А второй ген был спроектирован таким образом, что запускал синтез того же самого фактора транскрипции, который его активировал.

Так получилась замкнутая петля обратной связи, никак, однако, не влиявшая на нормальное функционирование клетки.

Пока клетка не "пробовала" галактозу, она работала как обычно. Но стоило лишь добавить сахар в раствор с культурой, как генетическая петля памяти активировалась и клетка начинала всё время вырабатывать специфический фактор транскрипции (что было видно по свечению флуоресцентного красителя). Причём это ключевой момент изобретения: свечение продолжалось безостановочно, даже после того как клетку перестали "кормить" сахаром.

Авторы этой искусственной биологической системы подчёркивают, что её принцип может пригодиться для создания искусственных организмов, способных индицировать уровень загрязнения окружающей среды. И даже кратковременное наличие загрязнителя не пройдёт незамеченным, поскольку будет записано в клеточной памяти.

Аналогичный принцип придётся кстати при разработке новых методов ранней диагностики рака (клетки можно запрограммировать на индикацию определённых повреждений ДНК). Кроме того, исследователи намерены разработать биологический клеточный имплантат для млекопитающего (в перспективе -- для человека), который будет суммировать и хранить данные о повреждении клеток тела под действием ультрафиолетового облучения.

Экстрасенсорные опыты по воспроизведению генетической памяти. На одном из выступлений в Новосибирском Доме ученых известный экстрасенс Валерий Авдеев продемонстрировал интересный психологический опыт. Погрузив участника эксперимента в гипнотическое состояние, он последовательно вызывал у того возрастные ассоциации, направленные вспять, в детство. Достигнув «младенческого состояния», Авдеев с согласия испытуемого погрузил его в тот период, когда он еще даже не был... зачат. То, что происходило, не укладывалось в известные рамки жизненного опыта. Испытуемый последовательно воспроизводил действия крестьянина XIX века, сеющего рожь и плетущего со знанием дела лапти.

Авдеев усложнил эксперимент: «А сейчас доисторические времена. Что происходит с вами?» И здесь началось нечто, внушающее суеверный ужас. Солидный мужчина сорока лет, в строгом черном костюме, при галстуке, неожиданно встал на четвереньки, запрокинул голову вверх и завыл по-волчьи.»[12]

Заключение

В ходе выполнения своей курсовой работы я рассмотрела основные представления о памяти, различные её феномены, теории, объясняющие их.

В течении всей своей жизни человек получает огромное множество информации, которая закрепляется и воспроизводится с помощью психического процесса, который называется памятью.

Память помогает в нам в течении всей нашей жизни. Без памяти наше существование было бы немыслимо. Мы бы ничего не запоминали и не воспроизводили бы, и в таком случае человечество никогда не достигло бы такого уровня цивилизации, который мы имеем сейчас.

Представление о памяти появилось ещё во времена древних греков, и с того времени память подвергалась изучению. Чем только не считали память - и смесью тьмы и света, тепла и холода, восковой пластиной, движением крови в организме, частью животного духа.

Сейчас учёные пришли к выводу, что память расположена в коре головного мозга, покрывающей его поверхность и имеющей благодаря складкам большую площадь. Но до сих пор точная локализация памяти так и не установлена.

Память бывает разная: произвольная и непроизвольная, зрительная и слуховая, эмоциональная и словесно-логическая, кратковременная и долговременная, генетическая и неврологическая и т.д.

Возможности человеческого мозга на сегодняшний день ещё не до конца изучены, и никто не может сказать, какой объём информации способен вместить наш мозг, однако факт остаётся фактом, никто из людей не использует свой мозг в полную мощность.

Однако существуют особые законы памяти, знание которых помогает людям лучше запоминать какую-либо информацию.

В ходе развития человечества было множество людей, поражавших окружающих своей необыкновенной памятью. У них были необычные способности, связанные с запоминанием и удержанием в памяти информации. Некоторые запоминали длинные ряды чисел, а некоторые могли воспроизвести музыкальное произведение, слышанное лишь один раз.

И до сегодняшнего дня учёные так и не смогли дать ясный ответ, объясняющий такую феноменальную память.

Так же существуют такие феномены памяти как дежавю, жемавю и феномен детектора ошибок. Эти феномены переживал практически каждый человек, однако и их природа не до конца изучена, и существуют лишь различные взгляды на их сущность. Некоторые относят явление дежавю к явлениям ложной памяти, а психиатры вообще считают дежавю психическим расстройством.

Феномен памяти пытались объяснить множество учёных, которые предложили множество гипотез. Среди них много интересных теорий, таких как «память воды», «молекула памяти». Однако общепризнанной теории о феномене памяти до сих пор не существует.

И даже сейчас не до конца известно, что такое феноменальная память - уникальные способности, одарённость или может всё-таки психическое расстройство.

Феномен памяти - тема до конца не изученная и не раскрытая. Но учёным открывается огромный простор в области исследования памяти и её феноменов, и эта тема чрезвычайно актуальна в наше время дл изучений. Не только потому, что она сейчас довольно модная, а и потому, что узнав всё о памяти, мы, возможно, смогли бы применить наши знания на практике, и таким образом достичь новых ступеней эволюции.

И я думаю, что всё же через некоторое время мы узнаем все тайны и загадки человеческой памяти, и они помогут нам в дальнейшем развитии человечества.

Список использованной литературы:

1. Р. С. Немов «Психология», Москва, 2006; стр.218-220

2. http://www.membrana.ru/lenta/?7668

3. http://bioinfo.ru/01.htm

4. http://mystery-universe.info/

5. http://all4you.kiev.ua

6. www.psycport.com

7. Крылов A., Маничева С. А. Практикум по общей, экспериментальной и прикладной психологии. С.-Петербург: Питер, 2000 - С. 89. - 92

8. Крутецкий В. А. Психология. - Москва, Просвещение, 1986. - С. 116 - 122.

9. http://siava.ru/

10. Эрик Берн «ВВЕДЕНИЕ В ПСИХИАТРИЮ И ПСИХОАНАЛИЗ ДЛЯ ?НЕПОСВЯЩЕННЫХ» ЭКСМО, 2003, стр. 323-324

11. Крылов А. А., Психология. - М.: Проспект, 2007. - С. 89.

12. http://www.sunhome.ru/journal/11232/

13. Р. Комер «Основы патопсихологии». Санкт Петербург, 2001, с.66-68

14. http://www.erudition.ru/

15. М. Г. Ярошевский «История психологии»

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.