RSS    



Нами был проведён сравнительный анализ промышленных препаратов, обладающих этими свойствами и полученного препарата (табл. 5).

Таблица 5.

Характеристика протеолитических свойств и степени гидролиза гомогената шквары под действием различных ферментных препаратов.

Фермент Массовая доля, % рН

ПА, ед/см 3

Аминный азот, мг на см3 субстрата

Протовортманин 0,1 7,2 0,838 7,616
Протосубтилин 0,1 7,2 0,0476 5,068
Панкреотин 0,1 7,2 0,0570 4,868
Пепсин 0,1 7,2 - -
Пигмауесин 0,3 7,2 - -
Контроль - 7,2 - 0,000

Контролем служила среда, где вместо фермента была добавлена дистилированная вода в аликвотном количестве.

Согласно полученным результатам,препарат протовортманин наиболее эффективен при получении белкового гидролизата.

В дальнейшем нами были определены условия эффективной работы фермента. Наши исследования ограничивались изучением влияния гидромодуля среды, температуры, продолжительности гидролиза, дозировки препарата, т. е. параметров, играющих решающее значение для разрабатываемой технологии и влияющих на экономику процесса.

Протеолитические ферменты катализируют реакцию расщепления белков с участием воды. В связи с этим важным моментом в подборе условий гидролиза является определение минимального гидромодуля для высокого гидролиза субстрата.

Постановка эксперимента заключалась в следующем: в семь колб объёмом в 100см3 вносили по 10 г гомогената шквары, затем одновременно раствор ферментного препарата и соответствующий объём воды. После внесения фермента и воды колбы закрывали и ставили на 3 часа в ультратермостат при 50оС. Результаты эксперимента оценивали по степени накопления аминного азота (рис.6). Как видно на рисунке 6 для активного гидролиза белков сырья достаточен гидромодуль гомогенат / вода = 1/1 : 1,5. Дальнейший рост содержания воды в среде увеличения степени гидролиза не даёт.

Решающее значение в ферментативных реакциях имеет температура: при низких температурах фермент может быть практически не активен, а высокие температуры могут привести к инактивации фермента. Поэтому при постановке этого эксперимента особое внимание уделялось поддержанию строгого температурного режима. Эксперимент проводился в трёх поверхностях. В 15 колб по 100см3 вносили 10 г гомогената. Колбы помещали в термостаты при температурах 20, 30, 40, 50, 60оС. Затем вносили по 3см3 фермента и 12см3 воды (согласно ранее полученным данным), плотно закрывали и вели гидролиз в течение 3 часов. По истечению 3 часов из каждой колбы отбирали по 10см3 субстрата и определяли аминный азот по методике Серенсена. Результаты представлены на рис. 7. Как видно на рис.7 наибольшее накопление аминного азота, а, следовательно, и максимальная степень гидролиза наблюдается при температуре 50оС. При температурах 20, 30, 40оС гидролиз, видимо, идёт не до конца, т. е. эти температуры не обеспечивают достаточной катализирующей способности ферментного препарата и требуют увеличения продолжительности процесса гидролиза, что с точки зрения технологического процесса очень невыгодно.

Температура 60оС приводит, по-видимому, к частичной инактивации фермента. Дальнейшее увеличение температуры приведёт, скорее всего к полной инактивации фермента, поэтому исследование действия ферментного препарата при температурах выше 60оС не имеет смысла.

Таким образом, оптимальная температура гидролиза субстрата препаратом из Penicillium wortmannii 2091 равна 50оС.

Рис. 6. Зависимость накопления аминного азота от

                       соотношения гомогенат-вода.

 


Рис. 7. Зависимость накопления аминного азота от

            температуры в процессе гидролиза.

 



Дальнейшим этапом нашей работы было определение дозировки препарата. Дозировка препарата в большей степени отражается на экономической стороне процесса, так как ферментные препараты пока ещё имеют достаточно высокую стоимость. Эксперимент проводился по аналогии с предыдущим с учётом оптимальной температуры и внесением различного количества ферментного препарата. Фермент вносили (по ПА) в количестве 2,0, 2,5, 3,0, 4,0, 5,0 ед. (в расчёте на 10 г гомогената). После трёх часов гидролиза определяли аминный азот. Результаты представлены на рис.8.

Исходя из полученных в ходе эксперимента данных можно сделать вывод о целесообразности внесения 4,0 ед. (по ПА) ферментного препарата в расчёте на 10 г белкового сырья.

Время гидролиза, необходимое для течения реакции, отражается на продолжительности всего технологического процесса. Именно с целью определения минимального времени гидролиза с максимальным эффектом накопления аминного азота был поставлен следующий эксперимент: гомогенат в количестве 40 г, с выбранным гидромодулем, помещали в термостат при 50оС и добавляли раствор фермента в оптимальном количестве. Пробы отбирали каждый час с момента внесения фермента. Эксперимент проводился в трёх повторностях.

Анализируя результаты можно сказать, что первые пять часов идёт накопление аминного азота, следовательно, гидролиз ещё не окончен и целесообразно его продолжать. После 6 – 7 часов гидролиза изменение аминного азота незначительно, т. е. процесс гидролиза, видимо, находится на стадии завершения.

Таким образом, оптимальная продолжительность процесса гидролиза укладывается в 6 часов.

Для того, чтобы судить о ценности полученного гидролиза была проведена оценка полученного продукта в сравнении с исходным сырьём (табл. 6).


Рис. 8. Зависимость накопления аминного азота от

            количества ферментного препарата в процессе

            гидролиза.

 



Таблица 6.

Характеристика химического состава исследуемых продуктов.

Показатель Гомогенат шквары Гидролизат шквары

Плотность, кг/м3

1,005 1,005
рН 7,75 7,40
Сухие вещества, % 8,4 8,4
Жир, % 2,2 2,2
Общий азот, % 7,25 7,25
Белковый азот водорастворимый, % 2,5 0,91
Аминный азот, мг/г 1,6 11,0
Вязкость 42 4,2

Анализируя данные таблицы 6 можно сделать следующие выводы: полученный гидролизат значительно отличается по свойствам от исходного продукта. Гидролизат шквары характерен накоплением большого количества свободных аминокислот, о чём свидетельствует резкое увеличение аминокислот азота и снижение рН среды. Как показали наши исследования, заметные изменения произошли во фракционном составе белковых компонентов. В результате гидролиза высота нерастворённого осадка продукта уменьшилась в 4 раза, почти в 4 раза уменьшилось содержание водорастворимых белков. Накопление низкомолекулярных продуктов распада белков, видимо, является причиной потери желирующих свойств водорастворимой фракции и снижения вязкости среды в 10 раз.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.