RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

            Лемма 2. В разложении (1*) j=1,...,n, . Яркость , где , причем вектор y ортогонален гиперплоскости Ï, так как , i,j=1,...,n.

            Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов  были координатами  fe в некотором ортонормированном базисе . В этом базисе конус . Заметим, что для любых векторов  и, тем более, для , [4].

            Пусть Х - поле зрения, например,  ограниченная область на плоскости R2, или на сетке ,  спектральная чувствительность j-го детектора излучения, расположенного  в точке   - излучение, попадающее в точку . Изображением назовем векторнозначную функцию

                                                                           (2**)

            Точнее, пусть Х - поле зрения, (Х, С, m) - измеримое пространство Х с мерой m, C - s-алгебра подмножеств X. Цветное (спектрозональное) изображение определим равенством

   ,                                                                     (2)

в котором почти для всех , , - m-измеримые функции на поле зрения X, такие, что

 .

Цветные изображения образуют подкласс функций  лебеговского класса  функций . Класс цветных изображений обозначим LE,n.

            Впрочем, для упрощения терминологии далее любой элемент  называется цветным изображением, а условие

                                                                   (2*)

условием физичности изображений f(×).

            Если f(×) - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение  , назовем черно-белым вариантом цветного изображения f(×), а цветное изображение , f(x)0, xÎX - цветом изображения f(×). В точках множества Â={xÎX: f(x)=0} черного цвета j(x), xÎÂ, - произвольные векторы из , удовлетворяющие условию: яркость j(x)=1. Черно-белым вариантом цветного изображения f(×) будем также называть цветное изображение b(×), имеющее в каждой точке Х ту же яркость, что и f(×), b(x)=f(x), xÎX, и белый цвет, b(x)=b(x)/b(x)=b, xÎX.

3. Форма цветного изображения.

            Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения  в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f(x) может измениться длина, но направление останется неизменным.

            Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f(x) в терминах преобразования его цвета j(×). Для этого определим отображение A(×):, ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .

            Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет  преобразованного изображения должен быть также постоянным на каждом множестве A(j), хотя, вообще говоря, - другим, отличным от j. Характекрным в данном случае является тот факт, что равенство  влечет . Если  - самое детальное изображение сцены, то, вообще говоря, на различных множествах A(j¢) и A(j) цвет изображения  может оказаться одинаковым[5].

Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.

            Для определения понятия формы цветного изображения f(×) на   удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1), 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно,  означает, что изображения f(×) и g(×) сравнимы по форме, причем форма  g(×)  не сложнее, чем форма f(×).      Если  и , то f(×) и g(×) назовем совпадающими по форме (изоморфными), f(×) ~ g(×). Например, если f(×) и g(×) - изображения одной и той же сцены, то g(×), грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f (×), если .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.