RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

            В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы из f(X) и построим по формуле (15) разбиение Rn . Для каждого q=1,2,... образуем разбиение E(N(q)), множества , j=1,...,N(q), которого образованы всеми попарно различными пересечениями  множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2...  -измеримы и  является продолжением

5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения  поля зрения X.

            Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.

            Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.

            Запишем изображение (5) в виде

                                                                (17)

где  .

            Пусть A1,...,AN - заданное разбиение X,  - индикаторная функция Ai, i=1,...,N. Рассмотрим задачу наилучшего в  приближения изображения  изображениями (17), не требуя, чтобы

                       (18)

            Речь идет о задаче аппроксимации произвольного изображения  изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN  поля зрения X, (см. Лемму 3).

            Так как 

то минимум S (19) по   достигается при

,                                                       (20)

и равен

                                                            (21)

Задача (18) тем самым сведена к задаче

.                                    (22)

            В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор 

 .                                                          (23)

            Максимум (неотрицательной) квадратичной формы  на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен  и достигается, например, при

            Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем[9] m(Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения  изображениями g(×) (17) является изображение

                          (24)

            Операторы  ,i=1,...,N, и  - нелинейные (зависящие от f(×)) проекторы: Пi проецирует в Rn векторы  на линейное подпространство , натянутое на собственный вектор  оператора Ф(23), отвечающий наибольшему собственному значению ri,

;                                                (25)

П проецирует в  изображение  на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

                          (19*).

            Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi  неотрицательны и среди них ri - наибольшее.

            Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f(×):

                                                          (26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

            Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению ri. Чтобы определить  следует решить задачу на собственные значения для оператора :

.

Поскольку rank=1,  имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно ri, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для                               n

            Лемма 4. Для любого изображения  решение (24) задачи (18) наилучшего приближения единственно и является элементом .

            Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению ri, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.