RSS    

   Реферат: СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ

Реферат: СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Математический факультет

Кафедра прикладной математики

ДИПЛОМНЫЙ ПРОЕКТ

сингулярное разложение в линейной задаче метода наименьших квадратов

Заведующий кафедрой прикладной

математики          

Исполнил:                                                           

Научный руководитель

          

 

Владикавказ 2002

СОДЕРЖАНИЕ

ВВЕДЕНИЕ............................................................................................................................................................................. 3

Глава 1. Метод наименьших квадратов.................................................................................................. 7

1.1. Задача наименьших квадратов......................................................................................................... 7

1.2. Ортогональное вращение Гивенса................................................................................................... 9

1.3. Ортогональное преобразование Хаусхолдера.......................................................................... 10

1.4. Сингулярное разложение матриц................................................................................................... 11

1.5. QR–разложение........................................................................................................................................ 15

1.6. Число обусловленности....................................................................................................................... 20

глава 2. Реализация сингулярного разложения.......................................................................... 25

2.1. Алгоритмы.................................................................................................................................................. 25

2.2. Реализация разложения....................................................................................................................... 27

2.3. Пример сингулярного разложения.................................................................................................. 29

глава 3. Использование сингулярного разложения  в методе наименьших квадратов              33

ЗАКЛЮЧЕНИЕ................................................................................................................................................................... 38

ЛИТЕРАТУРА..................................................................................................................................................................... 39

ПРИЛОЖЕНИЕ 1. Исходные тексты программы............................................................................... 40

ПРИЛОЖЕНИЕ 2. контрольный пример..................................................................................................... 45

ВВЕДЕНИЕ

Метод наименьших квадратов обычно используется как составная часть некоторой более общей проблемы. Например, при необходимости проведения аппроксимации наиболее часто употребляется именно метод наименьших квадратов. На этом подходе основаны: регрессионный анализ в статистике, оценивание параметров в технике и т.д.

Большое количество реальных задач сводится к линейной задаче наименьших квадратов, которую можно сформулировать следующим образом.

Пусть даны действительная m´n–матрица A ранга k£min(m,n) и действительный m–вектор b. Найти действительный n–вектор x0, минимизирующий евклидову длину вектора невязки Ax–b.

Пусть ynмерный вектор фактических значений, x nмерный вектор значений независимой переменной, b – коэффициенты в аппроксимации y линейной комбинацией n заданных базисных функций j:

.

Задача состоит в том, чтобы в уравнении подобрать такие b, чтобы минимизировать суммы квадратов отклонений e=y–Xb, где X – есть так называемая матрица плана, в которой строками являются nмерный вектора с компонентами, зависящими от xj:  каждая строка соответствует определенному значению xj. Коэффициенты можно найти решая нормальные уравнения , откуда . Покажем это. Возведем в квадрат выражение для е:

т. к.   .

Это выражение имеет экстремум в точке, где =0

Откуда и получаем .

Следует отметить, что последнее выражение имеет в определенной степени формальный характер, т. к. решение нормальных уравнений, как правило, проводится без вычисления обратной матрицы (метод Крамера) такими методами как метод Гаусса, Холесского и т. д.

Пример. Пусть заданы результаты четырех измерений (рис. 1): y=0 при x=0; y=1 при x=1; y=2 при x=3; y=5 при x=4. Задача заключается в том, чтобы провести через эти точки прямую  таким образом, чтобы сумма квадратов отклонений была минимальна. Запишем уравнение, описывающее проведение прямой  по результатам измерений. Мы получаем переопределенную систему:

или Xb=y. Нам понадобится матрица XTX и обратная к ней:

Тогда решение b=(XTX)-1XTy по методу наименьших квадратов будет иметь вид

Таким образом, оптимальная прямая задается уравнением  Метод точечной квадратичной аппроксимации (метод наименьших квадратов) не предполагает, что мы должны приближать экспериментальные данные лишь с помощью прямых линий. Во многих экспериментах связи могут быть нелинейными, и было бы глупо искать для этих задач линейные соотношения. Пусть, например, мы работаем с радиоактивным материалом. Тогда выходными данными у являются показания счетчика Гейгера в различные моменты времени t. Пусть наш материал представляет собой смесь двух радиоактивных веществ, и мы знаем период полураспада каждого из них, но не знаем, в каких пропорциях эти вещества смешаны. Если обозначить их количества через С и D, то показания счетчика будут вести себя подобно сумме двух экспонент, а не как прямая:

.                                                   (1)

На практике, поскольку радиоактивность измеряется дискретно и через различные промежутки времени, показания счетчика не будут точно

Рис. 1. Аппроксимация прямой линией.

соответствовать (1). Вместо этого мы имеем серию показаний счетчика  в различные моменты времени , и (1) выполняется лишь приближенно:

Если мы имеем более двух показаний, m>2, то точно разрешить эту систему относительно C и D практически невозможно. Но мы в состоянии получить приближенное решение в смысле минимальных квадратов.

Ситуация будет совершенно иной, если нам известны количества веществ C и D и нужно отыскать коэффициенты l и m. Это нелинейная задача наименьших квадратов, и решить ее существенно труднее. Мы по–прежнему будем минимизировать сумму квадратов ошибок, но сейчас она уже не будет многочленом второй степени относительно l и m, так что приравнивание нулю производной не будет давать линейных уравнений для отыскания оптимальных решений.

Глава 1. Метод наименьших квадратов

1.1. Задача наименьших квадратов

Задача наименьших квадратов заключается в минимизация евклидовой длины вектора невязок || Ax-b ||.

Теорема 1. Пусть Аm´nматрица ранга k, представленная в виде 

A=HRKT                                                     (2)

где H ортогональная m´m матрица; R m´nматрица вида

,                                              (3)

где: R11  –  kxkматрица ранга k; K ортогональная  kxkматрица. Определим вектор

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.