RSS    

   Реферат: СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ

Область изменений может быть задана двумя числами

Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,

                                (7)

Рассмотрим норму обратной[6] матрицы .

Для матрицы А существует сингулярное разложение , тогда , отсюда . Аналогично для обратной матрицы  и . Отсюда следует, что собственные числа матрицы  – 1/ есть величины, обратные собственным числам матрицы  – . При этом очевидно, что . Из последнего выражения вместе с (7) следует . Таким образом обусловленность матрицы равна произведению нормы матрицы на норму обратной матрицы.

Рассмотрим систему уравнений Ax=b, и другую систему, полученную изменением правой части: A(x+Dx)=b+Db . Будем считать Db ошибкой в b, а Dx соответствующей ошибкой в x, хотя нам нет необходимости считать ошибки малыми. Поскольку A(Dx)=Db, то определения M и  m немедленно приводят к неравенствам  Следовательно , при m¹0,

Величина  есть относительное изменение правой части, а величина   – относительная ошибка, вызванная этим изменением. Аналогичные выкладки можно провести не только с элементами вектора правой части но и с элементами самой матрицы А и найти зависимость между относительным изменением элементов матрицы и относительной ошибкой вызванной этим изменением. Отсюда следует, что число обусловленности выполняет роль множителя в увеличении относительной ошибки.

Приведем некоторые свойства числа обусловленности. Ясно, что M³m и поэтому cond(А)³1. Если Р – матрица перестановок[7], то компоненты вектора Px лишь порядком отличаются от компонент вектора х. Отсюда следует, что  и cond(P)=1 . В частности cond(I)=1. Если А умножается на скаляр с, то cond(cА)= cond(А). Если D – диагональная матрица, то

глава 2. Реализация сингулярного разложения

2.1. Алгоритмы

QR–алгоритм начинается с разложения матрицы по Грамму-Шмидту , затем меняются местами сомножители:  Эта матрица подобна первоначальной,  Этот процесс продолжается, причем собственные значения не изменяются:

Эта формула описывает QR–алгоритм без сдвигов. Обычно время которое тратится на такой процесс пропорционально кубу размерности матрицы – n3. Необходимо процесс ускорить, для чего используется предварительное приведение матрицы А к форме Хессенберга[8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу[9]. При использовании матрицы Хессенберга время процесса пропорционально n2, а при использовании трехдиагональной матрицы – n.

Можно использовать другие соотношения

где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL–алгоритма.

В общем случае, когда все собственные значения матрицы различны, последовательность матриц As  имеет пределом нижнюю треугольную матрицу , диагональные элементы которой представляют собой собственные значения матрицы А, расположенные в порядке возрастания их модулей. Если матрица А имеет кратные собственные значения, то предельная матрица не является треугольной, а содержит диагональные блоки порядка p, соответствующие собственному числу  кратности p.

В общем случае, наддиагональный  элемент  матрицы As на s-ом шаге асимптотически равен , где kij – постоянная величина. Сходимость QL–алгоритма вообще говоря недостаточна. Сходимость можно улучшить, если на каждом шаге вместо матрицы As использовать матрицу As-ksI (QL–алгоритм со сдвигом). Последовательность вычислений в этом случае описывается следующими соотношениями:

которые определяют матрицу . При этом асимптотическое поведение элемента  определено соотношением , а не , как прежде. Если сдвиг ks выбрать близко к величине  (наименьшее собственное значение), то в пределе внедиагональные элементы первой строки будут очень быстро стремиться к нулю. Когда ими можно пренебречь, элемент  с рабочей точностью равен , остальные являются собственными значениями оставшейся матрицы n-1-го порядка. Тогда, если QL–алгоритм выполнен без ускорения сходимости, то все равно , и поэтому автоматически можно выделить величину сдвига ks.

Если матрица А эрмитова, то очевидно, что и все матрицы Аs эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все Аs действительны и симметричны.

2.2. Реализация разложения

Таким образом, разложение  производится в два этапа. Сначала матрица А посредством двух конечных последовательностей преобразований Хаусхолдера где , приводится к верхней двухдиагональной форме следующего вида:

Далее реализуется итерационный процесс приведения двухдиагональной матрицы J0 к диагональной форме, так что имеет место следующая последовательность:  где  а Si и Ti  – диагональные матрицы.

Матрицы Ti выбираются так, чтобы последовательность матриц  сходилась к двухдиагональной матрице. Матрицы же Si выбирают так, чтобы все Ji  сохраняли двухдиагональную форму. Переход  осуществляется с помощью плоских вращений (10) – преобразований Гивенса. Отсюда,  где

а матрица  вычисляется аналогично с заменой  на .

Пусть начальный угол  произволен, однако следующие значения угла необходимо выбирать так, чтобы матрица Ji+1 имела ту же форму, что и Ji. Таким образом  не аннулирует  ни одного элемента матрицы, но добавляет элемент ;  аннулирует  но добавляет ;  аннулирует  но добавляет  и т.д., наконец,  аннулирует  и ничего не добавляет.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.