RSS    

   Реферат: Литература - Другое (книга по генетике)

p>частности ДНК человека, часто- или среднещепящими эндонукле-

азами образуется так много фрагментов различной длины (в

среднем, порядка 1 миллиона), что их не удается разделить с

помощью электрофореза, то есть не удается визуально иденти-

фицировать отдельные фрагменты ДНК на электрофореграмме.

После электрофореза рестрцированной геномной ДНК получается

равномерное окрашивание по всей длине геля - так называемый

шмер. Идентификация нужных фрагментов ДНК в таком геле воз-

можна только путем гибридизации с мечеными ДНК-зондами. Это

достигается при помощи метода блот-гибридизации по Саузерну.


1.3. Блот-гибридизация по Саузерну, гибридизация in situ.


Одним из наиболее эффективных методов идентификации

определенных молекул ДНК среди электрофоретически разделен-

ных фрагментов является ставший уже классическим метод

блот-гибридизации по Саузерну, по фамилии автора Edцuard So-

uthern, предложившего данный метод в 1975г . Последователь-

ные этапы данного метода представлены на Рис.1.3. Суть мето-

да заключается в том, что геномная ДНК подвергается рестрик-

ции одной или несколькими рестриктазами, после чего образую-

щиеся фрагменты разделяются по молекулярному весу в агароз-

ном или акриламидном гелях. Затем ДНК подвергается денатура-

ции in situ и переносится с геля на плотный носитель (обычно

нитроцеллюлозный фильтр или нейлоновую мембрану). Сам пере-

нос (блоттинг) осуществляется за счет действия капиллярных

сил, электрического поля или вакуума. Фиксированную на филь-

тре ДНК гибридизуют с радиоактивномеченым ДНК или РНК зон-

дом. Методом авторадиографии определяют положение искомого

фрагмента геномной ДНК на электрофореграмме. Блот-гибридиза-

ция - высоко чувствительный метод идентификации специфичес-

ких последовательностей ДНК. При достаточно длительной экс-

позиции (в течение несколько дней) и при высокой удельной

радиоактивности ДНК-зонда (более 10!9 расп/ мин/микроГ) этот

метод позволяет выявлять менее, чем 0,1 пикоГ ДНК. Так при

использовании зонда размерами в несколько сот оснований уни-

кальная последовательность в 1 000 п.о. может быть выявлена

в 10 микроГ геномной рестрицированной ДНК в виде отдельной

полосы на радиоавтографе после его экспозиции в течение 12

часов. Метод позволяет работать и с очень короткими олиго-

нуклеотидными зондами (20 п.о.), однако требует особенно хо-

рошего мечения и длительной экспозиции фильтра. Необходи-

мость работы с чистыми препаратами ДНК, применение высокоме-

ченых радиоактивных зондов, длительность и трудоемкость всей

процедуры делают её весьма дорогостоящей. Тем не менее, в

ряде случаев и сегодня метод не потерял своего значения в

том числе и для диагностики генных болезней. В последнее

время для этих целей нередко используют различные варианты

нерадиоактивного мечения или окраску ДНК азотно-кислым се-

ребром.

Гибридизация с меченым ДНК-зондом препаратов ДНК или

РНК, нанесенных капельно на твердый матрикс без предвари-

тельной рестрикции и электрофореза носит название дот- или

слот-гибридизации в зависимости от конфигурации пятна ДНК на

фильтре, округлой или продолговатой, соответственно. На

рис.1.3 также изображены последовательные этапы этих мето-

дов. Попутно отметим, что метод гибридизации ДНК-зондов с

электрофоретически разделенными молекулами РНК носит назва-

ние Нозерн блот, тогда как Вестерн блот или иммуноблот - это

связывание электрофоретически разделенных белков, фиксиро-

ванных на фильтрах, с мечеными антителами. Название этих ме-

тодов - дань уважения молекулярных генетиков профессору Сау-

зерну, внесшему неоценимый вклад в разработку эксперимен-

тальных подходов, используемых для анализа ДНК.

В ряде случаев для проведения гибридизации с ДНК зонда-

ми не требуется предварительного выделения и очистки ДНК.

Процедуру гибридизации можно проводить не только на геле, на

фильтрах или в растворе, но и на гистологических или хромо-

сомных препаратах. Этот метод носит название гибридизации in

situ. Вариант метода, при котором в качестве зондов исполь-

зуются препараты ДНК или РНК, меченые флюорохромами, называ-

ется FISH (flurescein in situ hybridization). Меченый

ДНК-зонд наносят на препараты дифференциально окрашенных и

подготовленных для гибридизации (денатурированных) метафаз-

ных хромосом. Предварительная обработка хромосом направлена

на облегчение доступа зонда к геномной ДНК. Важное значение

имеет также подбор условий, максимально способствующих про-

цедуре гибридизации. После отмывки несвязавшихся молекул ДНК

и нанесения светочувствительной эмульсии (при использовании

радиоактивной метки), либо проведения соответствующей обра-

ботки (при использовании биотин- или флюоресцеин-меченых ДНК

зондов) места локализации последовательностей ДНК, компле-

ментарных использованному ДНК-зонду, можно непосредственно

наблюдать в микроскоп в виде характерных точек над соответс-

твующими участками определенных хромосом (Рис.1.4).

Гибридизация in situ, является одним из наиболее эф-

фективных методов картирования комплементарных ДНК-зонду

последовательностей ДНК на хромосомах. Эта методика особенно

эффективна при исследовании распределения по геному повторя-

ющихся последовательностей ДНК, клонированных последователь-

ностей ДНК анонимного происхождения, при определении не

только хромосомной принадлежности, но и внутри-хромосомной

локализациии уникальных генов в тех случаях, когда имеются

соответствующие ДНК-зонды. При этом разрешающая способность

метода может достигать нескольких хромосомных бэндов. Сог-

ласно последним данным, в экспериментах на специально приго-

товленных и растянутых интерфазных хромосомах человека раз-

решающая способность метода FISH может достигать 50 kb, что

составляет всего около 1/20 величины среднего хромосомного

бэнда. Проблемы взаиморасположения клонированных фрагментов

ДНК даже в пределах одного хромосомного локуса также с успе-

хом решаются методом FISH.

Гибридизация in situ между молекулами РНК и кДНК-овыми

зондами, проводимая на гистологических препаратах, является

одним из наиболее эффективных методов анализа тканеспецифи-

ческого распределения и внутриклеточной локализации мРНК

(Манк, 1990). Подробно с этим и другими современными мето-

дом молекулярного и цитогенетического анализа, а также с их

многочисленными модификациями и вариантами можно ознако-

миться в серии работ, руководств и обзоров (Маниатис и др.,

1984; Дейвис, 1990; Sambrook et al., 1989).


1.4 ДНК-зонды, клонирование, векторные системы.


ДНК-зондом может служить любая однонитевая ДНК огра-

ниченного размера, используемая для поиска комплементарных

последовательностей в молекуле большего размера или среди

пула разнообразных молекул ДНК. В ряде случаев в качестве

зондов используют искусственным образом синтезированные оли-

гонуклеотидные последовательности ДНК, размер которых обычно

не превышает 30 нуклеотидов. Зондом также могут служить вы-

деленные из генома последовательности ДНК. Однако значитель-

но чаще такие последовательности предварительно клонируют,

чтобы иметь возможность получать их в любое время и в неог-

раниченном количестве. Клонирование предполагает встраивание

(инсерцию) чужеродной экзогенной ДНК в векторную молекулу

ДНК, обеспечивающую проникновение этой конструкции в бакте-

риальные клетки хозяина (Рис 1.5). Химерные молекулы ДНК,

составленные из фрагментов разного происхождения, носят наз-

вание рекомбинантных ДНК. В качестве клонирующих векторов

используют модифицированные плазмиды, фаги, космиды, ретро-

и аденовирусы, а также некоторые другие генетические конс-

трукции. Размеры клонированных ДНК-зондов составляют от со-

тен до нескольких тысяч нуклеотидов, что определяется, глав-

ным образом, способностью вектора удерживать чужеродный

фрагмент ДНК. Особенно широко применяют в качестве векторов

плазмидную ДНК.

Плазмиды - это небольшие кольцевые двухцепочечные мо-

лекулы ДНК, которые могут присутствовать в различном числе

копий в бактериальных клетках. Открытие плазмид связано с

изучением генетической природы антибиотикоустойчивости. Ока-

залось, что именно плазмиды могут нести гены, сообщающие

клеткам устойчивость к различным антибиотикам, и потеря

чувствительности инфекционных бактерий к их действию как раз

и происходит за счет отбора тех штаммов, в которых имеются

плазмиды с соответствующей генетической информацией. Заме-

тим, что присутствие плазмиды в бактериальной клетке вовсе

не обязательно для обеспечения ее жизнедеятельности, так как

при отсутствии антибиотиков в среде обитания бактерий штам-

мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.