RSS    

   Реферат: Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата

Упрощенная выборка имеет вид:

Таблица 4.3

N N- N+
Нормальный режим 264 157 999
Отказ работы двигателя типа «не отключение» 1 1000 1000 999
3 1000 1000 1000
6 1000 1000 999
8 999 1000 1000
Отказ работы двигателя типа «не включение» 1 1000 157 1000
3 999 286 1000
6 265 158 999
8 264 157 1000

Для наглядности построим гистограмму, и изобразим ее в виде функции – закона распределения, [8, 9, 25-29] для облегчения нахождения критической точки в методе статистических гипотез. Находим математические ожидания.  Графики зависимостей приведены на (Рис. 4.9) [27-29]:

Рис. 4.9 – Аппроксимированная гистограмма

Здесь m0 и  m1  - математические ожидания. При рассмотрении левостороннего критерия, получили критическую точку Gкр = 736. Т.о.  =Gкр, если, следуя алгоритму контроля,  ОП < , то есть основания утверждать, что отказа в работе двигателя нет, в противном случае, при попадании значения ОП в критическую область, т.е.   ОП >=   , ПО присваивается  значение единицы, и есть основания утверждать, что отказ в работе двигателя есть [25].


5 РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Рассмотрим космический аппарат как упругое тело, описываемое уравнениями (3.1), (3.2), (3.4), (3..5). Рассмотрим режим построения базовой ориентации с учетом  внешних возмущающих воздействий – аэродинамического и гравитационного, а также с учетом дрейфа нуля ГИВУС.

Для наглядности функционирования алгоритма стабилизации ДС КА, где в качестве гистерезиса используется пауза по времени, проведем моделирование СУО, с начальными условиями, приведенными в табл. 5.1.

Таблица 5.1

Вариант

Угловые скорости Угловые ускорения Моменты инерции
1

Wx = 0.5 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

Wx = 1 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

3

Wx = 3 c-1

Wy = 1 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

4

Wx = -4 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = -1 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

5

Wx = 0 c-1

Wy = 3 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

6

Wx = 0.5 c-1

Wy = 0.5 c-1

Wz = 1 c-1

Gx = 0.001 c-2

Gy = 0.001 c-2

Gz = 0.001 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

Функционирование СУО с набором начальных условий варианта 2    табл. 5.1  во временной плоскости представлено на рис. 5.1, рис. 5.2, рис. 5.3.

Функционирование СУО с набором начальных условий варианта 1-6 табл. 5.1 на фазовой плоскости, представлено в приложении Б.

.

Рис. 5.1 – Зависимость угловой скорости от времени в канале X

Рис. 5.2 – Зависимость углового ускорения от времени в канале X

Как показали результаты моделирования (рис. 5.1-5.3), разработанный алгоритм стабилизации при наличии внешних возмущающих воздействий  показал высокую эффективность в режиме построения базовой ориентации. Как показало моделирование, наиболее эффективным методом гашения шумов управления, которые возникают в следствии «скольжения» управляющего воздействия по границе области нечувствительности, при реализации логики управления, оказалось введение паузы по времени при выходе из зоны нечувствительности для двигателей малой тяги и зоны нечувствительности двигателей большой тяги. Для более эффективного гашения шумов, а соответственно снижения расхода рабочего тела, были введены в модель упругого КА двигатели малой тяги, с дополнительной зоной нечувствительности в законе управления и дополнительной задержкой по времени. Для сравнения был рассмотрен гистерезис с фиксированной зоной нечувствительности для ДБТ и ДМТ. Эффективность применения меньше по сравнению с паузой по времени, в связи с фиксированной зоной нечувствительности для всего диапазона угловых скоростей.

Рис. 5.3 – Зависимость управляющего момента от времени в канале X

Проведем моделирование СУО с различными наборами коэффициентов фильтра Льюинбергера. Начальные условия модели КА возьмем из 2-ого варианта табл. 5.1. Варианты коэффициентов фильтра Льюинбергера, представлены в табл. 5.2.

Результаты моделирования представлены в приложении В. Как показали результаты моделирования – минимальную погрешность оценивания показал   4-ый вариант наборов коэффициентов фильтра Льюинбергера. Как видно из результатов  моделирование, наиболее длительный по времени переходной процесс показал 1-ый набор коэффициентов табл. 5.2 (~40 сек.), последующие наборы, показали тенденцию существенного снижения времени переходного процесса, так 3-ий набор коэффициентов фильтра Льюинбергера, показал      (~8 сек.), вместе с тем, такая же тенденция наблюдается и с максимальной погрешностью оценивания. Так для 1-ого набора коэффициентов она составила (~0.01 1/с) , то для 4-ого набора коэффициентов максимальная погрешность оценивания составила (~0.0005 1/c). Следует отметить, что все четыре набора коэффициентов фильтра, были выбраны из области устойчивости рис. 4.2.1.     4-ый набор коэффициентов был найден методом интегральной квадратичной оценки качества, и является наиболее оптимальным, как показали результаты моделирования, для  данных НУ взятых из табл. 5.1.

Таблица 5.2 - Коэффициенты фильтра Льюинбергера

Вариант№ Набор коэффициентов
K1 K2 K3
1 0.9 0.27 0.027
2 3 3 1
3 6 12 8
4 20.516 149.611 0.042

.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.