RSS    

   Учебное пособие: Анализ временных рядов

Для разности  порядка d , то есть  модель

описывает уже стационарный обратимый процесс АРСС(р, q).

Для того чтобы от ряда разностей вернуться к исходному ряду требуется оператор s, обратный  :

Этот оператор называют оператором суммирования, поскольку

 .

Если же исходной является разность порядка d, то для восстановления исходного ряда понадобится d - кратная итерация оператора s, иначе d- кратное суммирование (интегрирование). Поэтому процесс (3) принято называть процессом АРИСС, добавляя к АРСС термин интегрированный. Кратко модель (3) записывают как АРИСС(р, d, q), где р – порядок авторегрессии, d – порядок разности, q – порядок скользящего среднего. Ясно, что при d =0 модель АРИСС переходит в модель АРСС .

На практике d обычно не превышает двух, то есть d .

Модель АРИСС допускает представление, аналогичное общей линейной модели, а так же в виде «чистого » процесса авторегрессии (бесконечного порядка). Рассмотрим, к примеру, процесс АРИСС (1, 1, 1):

 (4)

Из (4) следует, что

Отсюда

 (5)

В выражении (5) коэффициенты, начиная с третьего, вычисляются по формуле .

Представление (5) интересно тем, что веса, начиная с третьего, убывают по экспоненциальному закону. Поэтому, хотя формально зависит от всех прошлых значений, однако реальный вклад в текущее значение внесут несколько «недавних» значений ряда. Поэтому уравнение (5) более всего подходит для прогнозирования.


11.Прогнозирование по модели АРИСС

Как уже отмечалось, процессы АРИСС допускают представление в виде обобщенной линейной модели, то есть

Естественно искать будущее (прогнозное) значение ряда в момент  в виде

Ожидаемое значение , которое мы будем обозначать как

=

Первая сумма в правой части последнего соотношения содержат лишь будущие возмущения (прогноз делается в момент t, когда известны прошлые значения и ряда  и возмущений) и для них математическое ожидание равно 0 по определению. Что же касается второго слагаемого, то возмущения здесь уже состоялись, так что

Таким образом

= (1)

Ошибка прогноза, представляющая расхождение между прогнозным значением и его ожиданием есть

=

Дисперсия ошибки отсюда есть

 (2)

Прогнозирование по соотношению (1) в принципе возможно, однако затруднительно поскольку требует знания всех прошлых возмущений. К тому же для стационарных рядов скорость затухания  часто оказывается недостаточной, не говоря уже о нестационарных процессах, для которых ряды  расходятся.

Поскольку модель АРИСС допускает и другие представления, рассмотрим возможности их использования для прогнозирования. Пусть модель задана непосредственно разностным уравнением

 (3)

По известным значениям ряда (результатам наблюдений)  и оцененным значениям возмущений  , опираясь на рекуррентную формулу (3) можно оценить ожидаемое значение ряда в момент t+1:


-, (4)

При прогнозировании на два такта следует вновь воспользоваться рекуррентным соотношением (3), где в качестве наблюденного значения ряда в момент t+1 следует взять предсказанную по (4) величину , то есть  и так далее.

Наконец, возможно прогнозирование опираясь на представление процесса АРИСС в виде авторегрессии (). Как уже отмечалось, несмотря на то что порядок авторегрессии бесконечен, весовые коэффициенты в представлении ряда убывают довольно быстро, поэтому для вычисления прогноза достаточно умеренное число прошлых значений ряда.

Дисперсия ошибки прогноза на  шагов вперед есть

и согласно выражению (2) дается выражением

В предположении, что случайные возмущения являются гаусовским белым шумом, то есть  можно рассматривать доверительный интервал для прогнозного значения ряда стандартным образом.


12.Технология построения моделей АРИСС

Описанные выше теоретические схемы строились в предположении, что временной ряд имеет бесконечную предысторию, тогда как реально исследователю доступен ограниченный объем наблюдений. Модель приходится подбирать экспериментально, подгоняя ее к имеющимся в распоряжении данным. Поэтому с позиций теоретического применения теории анализа временных рядов определяющее значение имеют вопросы корректной спецификации модели АРИСС(p, d, q) (ее идентификации) и последующего оценивания ее параметров.

На этапе идентификации наблюденные данные используются для определения подходящего класса моделей и делаются предварительные оценки ее параметров, то есть строится пробная модель. Затем пробная модель подгоняется к данным более тщательно; при этом первичные оценки, полученные на этапе идентификации выступают в качестве начальных значений в итеративных алгоритмах оценивания параметров. И наконец, на третьем этапе полученная модель подвергается диагностической проверке для выявления возможной неадекватности модели и выработки подходящих изменений в ней.Рассмотрим перечисленные этапы подробнее.

Идентификация модели

Цель идентификации – получить некоторое представление о величинах p, d, q и о параметрах модели. Идентификация модели распадается на две стадии

1.   Определение порядка разности d исходного ряда .

2.   Идентификация модели АРСС для ряда разностей .

Основной инструмент, используемый на обеих стадиях – автокорреляционная и частная автокорреляционная функции.

В теоретической части мы видели, что у стационарных моделей автокоррелящии  спадают с ростом k весьма быстро (по корреляционному закону). Если же автокорреляционная функция затухает медленно и почти линейно, то это свидетельствует о нестационарности процесса, однако, возможно, его первая разность стационарно.

Построив коррелограмму для ряда разностей, вновь повторяют анализ и так далее. Считается, что порядок разности d, обеспечивающий стационарность, достигнут тогда, когда автокорреляционная функция процесса  падает довольно быстро. На практике  и достаточно просмотреть порядка 15-20 первых значений автокорреляции исходного ряда, его первые и вторые разности.

После того как будет получен стационарный ряд разностей, порядка d, изучают общий вид автокорреляционной и частной автокорреляционной функций этих разностей. Опираясь на теоретические свойства этих функций можно выбрать значения p и q для АР и СС операторов. Далее при выбранных p и q строятся начальные оценки параметров авторегрессии  и скользящего среднего b=(). Для авторегрессионных процессов используются уравнения Юла-Уокера, где теоретические автокорреляции заменены на их выборочные оценки. Для процессов скользящего среднего порядка q только первые q автокорреляций отличны от нуля и могут быть выражены через параметры  (см. ). Заменяя  их выборочными оценками  и решая получающиеся уравнения относительно , получим оценку . Эти предварительные оценки можно использовать как начальные значения для получения на следующих шагах более эффективных оценок.

Для смешанных процессов АРСС процедура оценивания усложняется . Так для рассмотренного в п. процесса АРСС(1,1) параметры и  , точнее их оценки, получаются из ( ) с заменой и  их выборочными оценками.

В общем случае вычисление начальных оценок процесса АРСС(p,q) представляет многостадийную процедуру и здесь не рассматривается. Отметим только, что для практики особый интерес имеют АР и СС процессы 1-го и 2-го порядков и простейший смешанный процесс АРСС(1,1).

В заключение заметим, что оценки автокорреляций, на основе которых строятся процедуры идентификации могут иметь большие дисперсии (особенно в условиях недостаточного объема выборки – несколько десятков наблюдений) и быть сильно коррелированны. Поэтому говорить о строгом соответствии теоретической и эмпирической автокорреляционных функций не приходится. Это приводит к затруднениям при выборе p, d, q, поэтому для дальнейшего исследования могут быть выбраны несколько моделей.

линейный ряд система временной ряд

Размещено на http://www.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.