RSS    

   Реферат: VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования

@Таблица 5.4. Время выполнения программы Fibonacci

=====88

@Рис. 5.2. Кривые Гильберта

Кривая Гильберта, как и любая другая самоподобная кривая, создается разбиением большой кривой на меньшие части. Затем вы можете использовать эту же кривую, после изменения размера и поворота, для построения этих частей. Эти части можно разбить на более мелкие части, и так далее, пока процесс не достигнет нужной глубины рекурсии. Порядок кривой определяется как максимальная глубина рекурсии, которой достигает процедура.

Процедура Hilbert управляет глубиной рекурсии, используя соответствующий параметр. При каждом рекурсивном вызове, процедура уменьшает параметр глубины рекурсии на единицу. Если процедура вызывается с глубиной рекурсии, равной 1, она рисует простую кривую 1 порядка, показанную на рис. 5.2 слева и завершает работу. Это условие остановки рекурсии.

Например, кривая Гильберта 2 порядка состоит из четырех кривых Гильберта 1 порядка. Аналогично, кривая Гильберта 3 порядка состоит из четырех кривых 2 порядка, каждая из которых состоит из четырех кривых 1 порядка. На рис. 5.3 показаны кривые Гильберта 2 и 3 порядка. Меньшие кривые, из которых построены кривые большего размера, выделены полужирными линиями.

Следующий код строит кривую Гильберта 1 порядка:

Line -Step (Length, 0)

Line -Step (0, Length)

Line -Step (-Length, 0)

Предполагается, что рисование начинается с верхнего левого угла области и что Length — это заданная длина каждого отрезка линий.

Можно набросать черновик метода, рисующего кривые Гильберта более высоких порядков:

Private Sub Hilbert(Depth As Integer)

    If Depth = 1 Then

        Нарисовать кривую Гильберта 1 порядка

    Else

        Нарисовать и соединить 4 кривые порядка (Depth - 1)

    End If

End Sub

====89

@Рис. 5.3. Кривые Гильберта, образованные меньшими кривыми

Этот метод требует небольшого усложнения для определения направления рисования кривых. Это требуется для того, чтобы выбрать тип используемых кривых Гильберта.

Эту информацию можно передать процедуре при помощи параметров Dx и Dy для определения направления вывода первой линии в кривой. Для кривой 1 порядка, процедура рисует первую линию при помощи функции Line-Step(Dx, Dy). Если кривая имеет более высокий порядок, процедура соединяет первые две подкривых, используя функцию Line-Step(Dx, Dy). В любом случае, процедура может использовать параметры Dx и Dy для выбора направления, в котором она должна рисовать линии, образующие кривую.

Код на языке Visual Basic для рисования кривых Гильберта короткий, но сложный. Вам может потребоваться несколько раз пройти его в отладчике для кривых 1 и 2 порядка, чтобы увидеть, как изменяются параметры Dx и Dy, при построении различных частей кривой.

Private Sub Hilbert(depth As Integer, Dx As Single, Dy As Single)

    If depth > 1 Then Hilbert depth - 1, Dy, Dx

    HilbertPicture.Line -Step(Dx, Dy)

    If depth > 1 Then Hilbert depth - 1, Dx, Dy

    HilbertPicture.Line -Step(Dy, Dx)

    If depth > 1 Then Hilbert depth - 1, Dx, Dy

    HilbertPicture.Line -Step(-Dx, -Dy)

    If depth > 1 Then Hilbert depth - 1, -Dy, -Dx

End Sub

Анализ времени выполнения программы

Чтобы проанализировать время выполнения этой процедуры, вы можете определить число вызовов процедуры Hilbert. При каждой рекурсии она вызывает себя четыре раза. Если T(N) — это число вызовов процедуры, когда она вызывается с глубиной рекурсии N, то:

T(1) = 1

T(N) = 1 + 4 * T(N - 1)           для N > 1.

Если раскрыть определение T(N), получим:

T(N)    = 1 + 4 * T(N - 1)

        = 1 + 4 *(1 + 4 * T(N - 2))

        = 1 + 4 + 16 * T(N - 2)

        = 1 + 4 + 16 * (1 + 4 * T(N - 3))

        = 1 + 4 + 16 + 64 * T(N - 3)

        = ...

        = 40 + 41 + 42 + 43 + ... + 4K * T(N - K)

Раскрыв это уравнение до тех пор, пока не будет выполнено условие остановки рекурсии T(1)=1, получим:

T(N) = 40 + 41 + 42 + 43 + ... + 4N-1

Это уравнение можно упростить, воспользовавшись соотношением:

X0 + X1 + X2 + X3 + ... + XM = (XM+1 - 1) / (X - 1)

После преобразования, уравнение приводится к виду:

T(N)    = (4(N-1)+1 - 1) / (4 - 1)

        = (4N - 1) / 3

=====90

С точностью до постоянных, эта процедура выполняется за время порядка O(4N). В табл. 5.5 приведены несколько первых значений функции времени выполнения. Если вы внимательно посмотрите на эти числа, то увидите, что они соответствуют рекурсивному определению.

Этот алгоритм является типичным примером рекурсивного алгоритма, который выполняется за время порядка O(CN), где C — некоторая постоянная. При каждом вызове подпрограммы Hilbert, она увеличивает размерность задачи в 4 раза. В общем случае, если при каждом выполнении некоторого числа шагов алгоритма размер задачи увеличивается не менее, чем в C раз, то время выполнения алгоритма будет порядка O(CN).

Это поведение противоположно поведению алгоритма поиска наибольшего общего делителя. Процедура GCD уменьшает размерность задачи в 2 раза при каждом втором своем вызове, и поэтому время ее выполнения порядка O(log(N)). Процедура построения кривых Гильберта увеличивает размер задачи в 4 раза при каждом своем вызове, поэтому время ее выполнения порядка O(4N).

Функция (4N-1)/3 — это экспоненциальная функция, которая растет очень быстро. Фактически, она растет настолько быстро, что вы можете предположить, что это не слишком эффективный алгоритм. В действительности работа этого алгоритма занимает много времени, но есть две причины, по которым это не так уж и плохо.

Во-первых, ни один алгоритм для построения кривых Гильберта не может быть намного быстрее. Кривые Гильберта содержат множество отрезков линий, и любой рисующий их алгоритм будет требовать достаточно много времени. При каждом вызове процедуры Hilbert, она рисует три линии. Пусть L(N) — суммарное число линий, из которых состоит кривая Гильберта порядка N. Тогда L(N) = 3 * T(N) = 4N - 1, поэтому L(N) также порядка O(4N). Любой алгоритм, рисующий кривые Гильберта, должен вывести O(4N) линий, выполнив при этом O(4N) шагов. Существуют другие алгоритмы построения кривых Гильберта, но они занимают почти столько же времени, сколько и этот алгоритм.

@Таблица 5.5. Число рекурсивных вызовов подпрограммы Hilbert

=====91

Второй факт, который показывает, что этот алгоритм не так уж плох, заключается в том, что кривые Гильберта 9 порядка содержат так много линий, что экран большинства компьютерных мониторов при этом оказывается полностью закрашенным. Это неудивительно, так как эта кривая содержит 262.143 отрезков линий. Это означает, что вам вероятно никогда не понадобится выводить на экран кривые Гильберта 9 или более высоких порядков. На каком‑то порядке вы столкнетесь с ограничениями языка Visual Basic и вашего компьютера, но, скорее всего, вы еще раньше будете ограничены максимальным разрешением экрана.

Программа Hilbert, показанная на рис. 5.4, использует этот рекурсивный алгоритм для рисования кривых Гильберта. При выполнении программы не задавайте слишком большую глубину рекурсии (больше 6) до тех пор, пока вы не определите, насколько быстро выполняется эта программа на вашем компьютере.

Рекурсивное построение кривых Серпинского

Как и кривые Гильберта, кривые Серпинского (Sierpinski curves) — это самоподобные кривые, которые обычно определяются рекурсивно. На рис. 5.5 показаны кривые Серпинского 1, 2 и 3 порядка.

Алгоритм построения кривых Гильберта использует всего одну подпрограмму для рисования кривых. Кривые Серпинского проще рисовать, используя четыре отдельных процедуры, которые работают совместно. Эти процедуры называются SierpA, SierpB, SierpC и SierpD. Это процедуры с косвенной рекурсией — каждая процедура вызывает другие, которые затем вызывают первоначальную процедуру. Они рисуют верхнюю, левую, нижнюю и правую части кривой Серпинского, соответственно.

На рис. 5.6 показано, как эти процедуры работают совместно, образуя кривую Серпинского 1 порядка. Подкривые изображены стрелками, чтобы показать направление, в котором они рисуются. Отрезки, соединяющие четыре подкривые, нарисованы пунктирными линиями.

@Рис. 5.4. Программа Hilbert

=====92

@Рис. 5.5. Кривые Серпинского

Каждая из четырех основных кривых состоит из диагонального отрезка, затем вертикального или горизонтального отрезка, и еще одного диагонального отрезка. Если глубина рекурсии больше единицы, каждая из этих кривых разбивается на меньшие части. Это осуществляется разбиением каждого из двух диагональных отрезков на две подкривые.

Например, для разбиения кривой типа A, первый диагональный отрезок разбивается на кривую типа A, за которой следует кривая типа B. Затем рисуется без изменений горизонтальный отрезок из исходной кривой типа A. Наконец, второй диагональный отрезок разбивается на кривую типа D, за которой следует кривая типа A. На рис. 5.7 показано, как кривая типа A второго порядка образуется из нескольких кривых 1 порядка. Подкривые изображены жирными линиями.

На рис. 5.8 показано, как полная кривая Серпинского 2 порядка образуется из 4 подкривых 1 порядка. Каждая из подкривых обведена контурной линией.

Можно использовать стрелки ä и ã для обозначения типа линий, соединяющих подкривые (тонкие линии на рис. 5.8), тогда можно будет изобразить рекурсивные отношения между четырьмя типами кривых так, как это показано на рис. 5.9.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.